
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

ДОНЕЦЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ВАСИЛЯ СТУСА

ФАКУЛЬТЕТ ІНФОРМАЦІЙНИХ І ПРИКЛАДНИХ ТЕХНОЛОГІЙ

КАФЕДРА ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ

МАРЧЕНКО МИКОЛА ОЛЕГОВИЧ

Допускається до захисту:

в.о. завідувача кафедри

інформаційних технологій,

д-р. техн. наук, професор

________Наталія ВЕСЕЛОВСЬКА

«____»___________ 2025 р.

ЗАСТОСУВАННЯ НЕЧІТКИХ ДАНИХ В ІГРОВИХ ДОДАТКАХ

Спеціальність 122 Комп’ютерні науки

Кваліфікаційна (магістерська) робота

Науковий керівник:

Роман БАБАКОВ, професор кафедри

інформаційних технологій,

д. т. н., доцент

Оцінка: ______ / ______ / ________
 (бали/за шкалою ЄКТС/за національною шкалою)

Голова ЕК: ________________
 (підпис)

Вінниця – 2025

2

АНОТАЦІЯ

Магістерська робота присвячена вирішенню актуальної науково-

прикладної задачі підвищення реалістичності та інтерактивності ігрового

процесу в настільних рольових системах шляхом впровадження методів

штучного інтелекту. Об’єктом дослідження є процес прийняття рішень у

стохастичних ігрових системах в умовах невизначеності, а предметом — методи

нечіткого виведення для моделювання динаміки психофізичного стану ігрового

персонажа. Метою роботи є розробка кросплатформенного програмного

комплексу — системи підтримки прийняття рішень, який автоматизує

розрахунок впливу стресу та втоми на ефективність персонажа, реалізуючи

механіку «Спіраль Смерті». У ході дослідження використано теорію нечітких

множин для формалізації лінгвістичних змінних, алгоритм нечіткого виведення

Мамдані для побудови бази правил, а також об’єктно-орієнтоване проєктування

та методи клієнт-серверної взаємодії REST API.

В результаті виконання роботи проведено аналіз існуючих засобів

автоматизації рольових ігор та виявлено їх неспроможність моделювати

нелінійні стани виснаження. Розроблено математичну модель оцінювання стану

персонажа на основі бібліотеки scikit-fuzzy, яка враховує параметри здоров’я,

втоми та моралі, генеруючи динамічні модифікатори складності. Спроєктовано

та програмно реалізовано додаток «D&D Assistant» мовою Python із

використанням фреймворків PySide6 та Flask, що підтримує синхронізацію

ігрового стану в реальному часі. Експериментально підтверджено, що

впровадження нечіткого контролера дозволяє усунути дискретність ігрової

механіки, забезпечуючи плавне зростання ймовірності критичної помилки

залежно від ступеня виснаження персонажа. Практичне значення роботи полягає

у створенні інструменту, що автоматизує рутинні розрахунки Майстра та

підвищує рівень занурення гравців, з можливістю подальшого масштабування

для інших покрокових стратегічних систем.

3

ABSTRACT

The master's thesis is devoted to solving the relevant scientific and applied

problem of increasing the realism and interactivity of the gameplay in tabletop role-

playing systems by introducing artificial intelligence methods. The object of the

research is the decision-making process in stochastic game systems under conditions

of uncertainty, and the subject is fuzzy inference methods for modeling the dynamics

of the game character's psychophysical state. The aim of the work is to develop a cross-

platform software complex — a decision support system that automates the calculation

of the influence of stress and fatigue on character efficiency, implementing the "Death

Spiral" mechanic. During the research, fuzzy set theory was used to formalize linguistic

variables, the Mamdani fuzzy inference algorithm was used to build a rule base, as well

as object-oriented design and REST API client-server interaction methods.

As a result of the work, an analysis of existing role-playing game automation

tools was carried out, and their inability to model nonlinear states of exhaustion was

revealed. A mathematical model for assessing the character's state was developed

based on the scikit-fuzzy library, which takes into account health, fatigue, and morale

parameters, generating dynamic difficulty modifiers. The "D&D Assistant" application

was designed and implemented in Python using the PySide6 and Flask frameworks,

supporting real-time game state synchronization. It was experimentally confirmed that

the introduction of a fuzzy controller allows eliminating the discreteness of game

mechanics, ensuring a smooth increase in the probability of a critical error depending

on the degree of character exhaustion. The practical value of the work lies in creating

a tool that automates the Game Master's routine calculations and increases the level of

player immersion, with the possibility of further scaling for other turn-based strategic

systems.

Keywords: FUZZY LOGIC, MAMDANI ALGORITHM, PYTHON, FLASK,

PYSIDE6, ROLE-PLAYING GAMES, DUNGEONS & DRAGONS.

4

ЗМІСТ

ЗМІСТ ... 4

ВСТУП ... 9

РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ ВИКОРИСТАННЯ НЕЧІТКОЇ

ЛОГІКИ В ІГРОВИХ СИСТЕМАХ ... 12

1.1. Поняття нечіткої множини та лінгвістичної змінної 12

1.2. Архітектура систем нечіткого виведення (Mamdani vs Sugeno) 14

1.3. Проблематика випадковості в іграх: від лінійного Random до

зважених рішень .. 15

1.3.1. Обмеження рівномірного розподілу ... 16

1.3.2. Переваги нечіткого моделювання ймовірностей 16

1.4. Аналіз ігрової механіки Dungeons & Dragons 5e та проблематика її

автоматизації .. 17

1.4.1. Огляд існуючих засобів автоматизації D&D 5e 18

1.4.2. Критичний аналіз механіки Hit Points та Armor Class у контексті

моделювання реальності... 19

Висновки до Розділу 1 .. 21

РОЗДІЛ 2. ПРОЄКТУВАННЯ ТА РЕАЛІЗАЦІЯ СИСТЕМИ НЕЧІТКОГО

ВИВЕДЕННЯ ДЛЯ ІГРОВОГО ДОДАТКУ ... 22

2.1. Обґрунтування вибору інструментальних засобів розробки 22

2.1.1. Мова програмування Python та наукові бібліотеки 22

2.1.2. Середовище розробки графічного інтерфейсу (GUI) 23

2.1.3. Архітектурні рішення мережевої взаємодії 23

2.2. Програмна реалізація компонентів системи 24

5

2.2.1. Точка входу та модуль вибору ролі (App) 24

2.2.2. Модуль керування даними та мережевої синхронізації

(DataManager) .. 27

2.3 Концептуальна модель та алгоритм оцінки стану персонажа.......... 30

2.3.1 Реалізація модуля нечіткої логіки: лінгвістичні змінні та функції

належності .. 31

2.3.2. Побудова та обґрунтування вхідної лінгвістичної змінної

(Antecedent) .. 31

2.3.3. Побудова та семантика вихідних лінгвістичних змінних

(Consequents) .. 35

2.3.4 Розробка бази нечітких правил та алгоритм дефазифікації

результатів ... 38

2.3.6. Структура та семантика бази знань .. 39

2.3.7. Агрегація та логічне виведення (Inference) 40

2.3.8. Дефазифікація та інтерпретація результатів 41

2.4. Програмна реалізація графічного інтерфейсу та механік взаємодії 42

2.4.1. Реалізація інтерфейсу Майстра (DM_MainWindow) 42

2.4.2. Функціональні підсистеми керування ігровим процесом (DM

Logic) .. 45

2.4.3. Реалізація клієнтського інтерфейсу Гравця (Player UI) 48

2.4.4. Реалізація клієнтського інтерфейсу Гравця (Player Client) 50

2.4.5. Реалізація інтерактивних компонентів та підсистеми візуалізації

 ... 52

РОЗДІЛ 3. АНАЛІЗ ЕФЕКТИВНОСТІ ТА ТЕСТУВАННЯ 56

3.1. Методика та умови проведення експерименту 56

3.1.1. Опис тестового стенда та конфігурація обладнання 56

6

3.1.2. Визначення метрик якості та критеріїв успіху 57

3.2. Дослідження ефективності алгоритмів нечіткого виведення 58

3.2.1. Моделювання сценарію «Спіраль Смерті»: аналіз динаміки

зміни станів .. 59

3.2.2. Порівняльний аналіз нечіткої моделі з детермінованими

ігровими механіками ... 60

3.3. Технічне тестування продуктивності клієнт-серверної архітектури

 ... 61

3.3.1. Оцінка затримок синхронізації (Network Latency) 62

3.3.2. Перевірка відмовостійкості системи збереження даних 64

ВИСНОВКИ ... 65

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ ... 67

7

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ, СИМВОЛІВ, ОДИНИЦЬ,

СКОРОЧЕНЬ І ТЕРМІНІВ

БД — База даних.

ГПВЧ — Генератор псевдовипадкових чисел.

ОС — Операційна система.

ПЗ — Програмне забезпечення.

AC (Armor Class) — Клас обладунку; показник, що визначає складність

влучання по персонажу.

API (Application Programming Interface) — Прикладний програмний

інтерфейс.

CRPG (Computer Role-Playing Game) — Комп’ютерна рольова гра.

DC (Difficulty Class) — Клас складності; числове значення, яке необхідно

подолати при кидку кубика для успіху дії.

DM (Dungeon Master) — Майстер підземель (Ведучий); гравець, який керує

світом гри та оповідає історію.

FIS (Fuzzy Inference System) — Система нечіткого виведення. GUI

(Graphical User Interface) — Графічний інтерфейс користувача.

HP (Hit Points) — Очки здоров’я; ресурс, що відображає фізичну

витривалість персонажа.

HTTP (HyperText Transfer Protocol) — Протокол передачі гіпертексту.

JSON (JavaScript Object Notation) — Текстовий формат обміну даними.

LAN (Local Area Network) — Локальна обчислювальна мережа. MF

(Membership Function) — Функція належності.

NPC (Non-Player Character) — Неігровий персонаж; персонаж, яким керує

Майстер.

REST (Representational State Transfer) — Архітектурний стиль взаємодії

компонентів розподіленої системи.

RPG (Role-Playing Game) — Рольова гра.

SRD (System Reference Document) — Довідковий документ системи;

офіційний набір базових правил D&D.

8

TCP (Transmission Control Protocol) — Протокол керування передачею.

VTT (Virtual Tabletop) — Віртуальний ігровий стіл; програмне

забезпечення для проведення настільних ігор онлайн.

d20 — Двадцятигранний гральний кубик (ікосаедр).

μ(x) — Функція належності, що визначає ступінь приналежності елемента

x до нечіткої множини.

U — Універсум (область міркувань); множина всіх можливих значень

вхідної змінної.

Tsync — Час синхронізації даних між клієнтом і сервером.

Death Spiral («Спіраль Смерті») — механіка гри, де отримання

пошкоджень призводить до зниження ефективності персонажа, що збільшує

ризик отримання нових пошкоджень.

Fumble (Критичний провал) — ситуація в грі, коли випадає мінімально

можливе значення на кубику (зазвичай 1), що призводить до негативних

наслідків.

9

ВСТУП

Актуальність теми. Сучасна індустрія комп’ютерних ігор та цифрових

інструментів для настільних рольових систем (Tabletop RPG) переживає етап

активної трансформації, спрямованої на підвищення рівня імерсивності та

реалізму. Одним із ключових викликів у розробці таких систем є моделювання

правдоподібної поведінки персонажів у критичних ситуаціях.

Критичний аналіз існуючих підходів показує, що більшість ігрових

механік базуються на детермінованій (бінарній) логіці та жорстких порогових

значеннях. Наприклад, у популярній системі Dungeons & Dragons персонаж

зберігає 100% ефективності до моменту повної втрати очок здоров'я. Такий

підхід не дозволяє моделювати плавні переходи психофізичних станів

(накопичення втоми, наростання стресу, паніка), що знижує варіативність

ігрового процесу.

Вирішення цієї проблеми можливе шляхом застосування апарату нечіткої

логіки (Fuzzy Logic), яка дозволяє оперувати лінгвістичними змінними та

функціями належності для прийняття рішень в умовах невизначеності. Розробка

програмних засобів, що імплементують нечіткі контролери для моделювання

механіки «Спіраль Смерті» (Death Spiral), є актуальним науково-прикладним

завданням, оскільки це дозволяє автоматизувати рутинні розрахунки Майстра

(Game Master) та збагатити наративну складову гри.

Зв’язок роботи з науковими програмами, планами, темами. Робота

виконувалась згідно з планом науково-дослідних робіт кафедри інформаційних

технологій Донецького національного університету імені Василя Стуса.

Мета і завдання дослідження. Метою роботи є підвищення адаптивності

та реалістичності ігрового процесу в рольових системах шляхом розробки

програмного забезпечення, що використовує методи нечіткого виведення для

динамічного визначення стану персонажів.

Для досягнення мети вирішено такі завдання:

10

Проаналізувати існуючі методи моделювання поведінки агентів в ігрових

системах та виявити обмеження детермінованих алгоритмів.

Розробити математичну модель нечіткого контролера, визначивши вхідні

лінгвістичні змінні (здоров’я, втома, мораль) та базу правил для виведення

модифікаторів складності.

Спроєктувати архітектуру клієнт-серверного додатка, що забезпечує

синхронізацію станів між модулем Гравця та модулем Майстра.

Реалізувати програмний засіб «D&D Assistant» мовою Python із

використанням бібліотек scikit-fuzzy (математичне ядро) та PySide6 (графічний

інтерфейс).

Експериментально дослідити ефективність системи шляхом моделювання

сценаріїв зміни ігрових станів.

Об’єктом дослідження є процес прийняття рішень та моделювання

динамічних станів персонажів у рольових ігрових системах.

Предметом дослідження є методи та алгоритми нечіткої логіки для

визначення нелінійної залежності ймовірності успіху ігрових дій від ресурсних

показників персонажа.

Методи дослідження. У роботі використано комплекс методів: системний

аналіз — для формалізації вимог до ПЗ; теорія нечітких множин — для

фазифікації вхідних даних та побудови функцій належності; алгоритм Мамдані

— для реалізації логічного виведення; об’єктно-орієнтоване проєктування —

для розробки архітектури додатку; клієнт-серверні технології (REST API) — для

організації мережевої взаємодії.

Наукова новизна одержаних результатів полягає у наступному:

Удосконалено метод моделювання ігрової механіки виснаження («Death

Spiral») шляхом інтеграції системи нечіткого виведення, що, на відміну від

лінійних штрафів, забезпечує плавне зростання складності гри залежно від

комплексного стану персонажа.

Набуло подальшого розвитку застосування нечітких контролерів у

допоміжних інструментах для настільних ігор, що дозволяє автоматизувати

11

врахування прихованих параметрів (стрес, мораль) без ускладнення ігрової

математики для користувача.

Практичне значення одержаних результатів. Розроблений програмний

комплекс «D&D Assistant» є готовим інструментом для Майстрів Підземель,

який дозволяє автоматизувати відстеження станів персонажів, візуалізувати

рівень загрози та зменшити когнітивне навантаження під час гри. Реалізована

архітектура підтримує роботу в локальній мережі та може бути масштабована

для інших ігрових систем.

Апробація результатів дослідження. Основні положення роботи

доповідались та обговорювались на V Всеукраїнській науково-технічній

конференції молодих вчених, аспірантів та студентів «Комп'ютерні ігри та

мультимедіа як інноваційний підхід до комунікації – 2025» (м. Одеса, 25–26

вересня 2025 р.).

Публікації. За результатами досліджень опубліковано 1 тезу доповіді:

Марченко М. О. Методи застосування нечітких даних в ігрових додатках //

Комп'ютерні ігри та мультимедіа як інноваційний підхід до комунікації – 2025 :

матеріали V Всеукр. наук.-техн. конф. (Одеса, 25–26 вер. 2025 р.). Одеса : ОНТУ,

2025. Т. 1. С. 339.

Структура та обсяг роботи. Магістерська робота складається зі вступу,

трьох розділів, висновків, списку використаних джерел та додатків. Повний

обсяг роботи становить [Кількість] сторінок.

12

РОЗДІЛ 1. ТЕОРЕТИЧНІ ОСНОВИ ВИКОРИСТАННЯ НЕЧІТКОЇ

ЛОГІКИ В ІГРОВИХ СИСТЕМАХ

Розвиток сучасних ігрових додатків вимагає переходу від простих

детермінованих моделей до складних адаптивних систем, здатних імітувати

поведінку людини та реагувати на невизначеність середовища. У цьому розділі

розглянуто фундаментальні засади теорії нечітких множин, проаналізовано

архітектуру систем нечіткого виведення та здійснено порівняльний аналіз

підходів до генерації випадкових подій в іграх. Обґрунтовано доцільність

використання нечіткої логіки для моделювання динамічних станів ігрових

персонажів.

1.1. Поняття нечіткої множини та лінгвістичної змінної

Традиційна математична логіка (булева логіка) оперує чіткими поняттями:

твердження може бути або істинним (1), або хибним (0). Однак у реальному світі,

і зокрема в моделюванні рольових ігор, більшість понять не мають чітких меж.

Характеристики персонажа, такі як «втомлений», «поранений» або «впевнений»,

є суб’єктивними і не можуть бути адекватно описані бінарними значеннями.

Для вирішення цієї проблеми у 1965 році Лотфі Заде запропонував теорію

нечітких множин (Fuzzy Sets). На відміну від класичної множини, де елемент або

належить множині повністю, або не належить зовсім, у нечіткій множині елемент

може належати їй з певною мірою (ступенем) .

Ключовим поняттям теорії є функція належності (Membership Function, μ),

яка ставить у відповідність кожному елементу x з універсуму U число з інтервалу

[0,1], що характеризує ступінь належності елемента до нечіткої множини A:

μA(x):U→[0,1]

Існує декілька типових форм функцій належності, які найчастіше

використовуються в інженерних задачах та геймдеві:

13

Трикутна (Triangular): найпростіша форма, задається трьома точками.

Використовується для опису станів, що мають чіткий пік (наприклад, «середній

рівень небезпеки»).

Трапецієподібна (Trapezoidal): дозволяє задати інтервал повної належності

(наприклад, стан «повністю здоровий» може тривати від 80% до 100% HP).

Сигмоїдальна (Sigmoidal) та Гауссова: забезпечують найбільш плавні

переходи, що є критично важливим для реалістичної симуляції втоми або стресу

(Тут доцільно вставити Рисунок 1.1 – Приклад графіків трикутної та

трапецієподібної функцій належності)

Важливим інструментом нечіткої логіки є поняття лінгвістичної змінної.

Це змінна, значеннями якої є не числа, а слова або словосполучення природної

мови (терми). Наприклад, лінгвістична змінна «Рівень Здоров’я» може набувати

значень:

T={«Критичний», «Низький», «Середній», «Високий»}

Використання лінгвістичних змінних дозволяє формалізувати експертні

знання (у нашому випадку – правила настільної рольової гри) у вигляді,

14

наближеному до людського мислення, що значно спрощує процес налаштування

ігрового балансу.

1.2. Архітектура систем нечіткого виведення (Mamdani vs Sugeno)

Системи нечіткого виведення (Fuzzy Inference Systems, FIS) – це

обчислювальні структури, що базуються на нечіткій логіці для перетворення

вхідних даних на вихідні результати. Типовий процес нечіткого виведення

складається з чотирьох етапів:

Фазифікація: перетворення чітких вхідних даних (наприклад, 15 HP) у

нечіткі множини.

База правил: набір логічних правил типу «ЯКЩО (умова), ТО (наслідок)».

Агрегація та виведення: визначення результуючої нечіткої множини на

основі активних правил.

Дефазифікація: перетворення результуючої нечіткої множини назад у чітке

число (crisp value) для використання в програмному коді.

У науковій літературі виділяють два основні типи алгоритмів нечіткого

виведення: алгоритм Мамдані (Mamdani) та алгоритм Сугено (Takagi-Sugeno-

Kang). Порівняльний аналіз цих підходів наведено в таблиці 1.1.

Таблиця 1.1. Порівняння алгоритмів Мамдані та Сугено

Критерій

порівняння
Алгоритм Мамдані Алгоритм Сугено

Тип вихідних даних
Нечітка множина

(функція)

Лінійна функція

або константа

Інтерпретованість
Висока (наближена

до людської мови)

Низька (більше

схожа на формулу)

Гнучкість

налаштування

Висока (зручно для

експертних систем)

Обмежена

математичною моделлю

15

Критерій

порівняння
Алгоритм Мамдані Алгоритм Сугено

Обчислювальна

складність

Вища (потребує

інтегрування площ)

Нижча (швидкі

обчислення)

Сфера застосування

Системи підтримки

прийняття рішень, ігри,

медицина

Системи

автоматичного

керування, робототехніка

Для задач ігрового дизайну, де важлива наративна складова та інтуїтивне

розуміння правил, алгоритм Мамдані є більш пріоритетним [3]. Він дозволяє

геймдизайнеру описувати правила природною мовою (наприклад: «Якщо

здоров’я низьке, а втома висока, то шанс провалу значний»), що забезпечує

гнучкість у налаштуванні «Спіралі Смерті» (Death Spiral) — механіки, де стан

персонажа впливає на його ефективність. Хоча алгоритм Сугено є швидшим, він

втрачає семантичну прозорість, необхідну для рольових систем.

(Тут доцільно вставити Рисунок 1.2 – Схема процесу нечіткого виведення

за алгоритмом Мамдані)

1.3. Проблематика випадковості в іграх: від лінійного Random до зважених

рішень

Випадковість (Randomness) є фундаментальним елементом більшості

ігрових систем, забезпечуючи непередбачуваність та реіграбельність. Однак

реалізація випадковості в комп’ютерних іграх часто стикається з проблемою

дисонансу між математичною ймовірністю та очікуваннями гравця.

16

1.3.1. Обмеження рівномірного розподілу

Класичні генератори псевдовипадкових чисел (ГПВЧ), які

використовуються в більшості мов програмування (функції типу rand() або

random.randint), працюють на основі рівномірного розподілу. Це означає, що

кожне значення в діапазоні має однакову ймовірність появи. Для настільних ігор

(наприклад, кидок кубика d20) це є нормою. Проте в комп’ютерній симуляції це

створює низку проблем:

Відсутність контексту: Кубик «не знає», що персонаж, який його кидає,

перебуває на межі смерті або під впливом паніки.

Висока дисперсія: Існує однакова ймовірність випадання як «1»

(критичний провал), так і «20» (критичний успіх), незалежно від майстерності

персонажа.

Дискретність модифікаторів: Традиційний спосіб корекції випадковості —

додавання фіксованого числа (+5 до кидка). Це зміщує діапазон, але не змінює

характер розподілу ймовірностей.

1.3.2. Переваги нечіткого моделювання ймовірностей

Використання апарату нечіткої логіки для моделювання ймовірнісних

процесів у динамічних системах (якими є настільні рольові ігри) надає низку

суттєвих переваг порівняно з класичними детермінованими підходами.

По-перше, ключовою перевагою є здатність оперувати лінгвістичними

змінними та неточними поняттями, що природніше для опису стану живих істот,

ніж чіткі числові значення. Замість жорсткої бінарної логіки («персонаж

боєздатний» / «персонаж небоєздатний»), нечітке моделювання дозволяє

працювати з проміжними станами (наприклад, «значною мірою виснажений»,

«трохи переляканий»). Це дозволяє системі «розуміти» контекст ситуації на

рівні, наближеному до людського сприйняття.

17

По-друге, нечіткі контролери забезпечують плавність переходів (gradient

transition) між станами. У традиційних ігрових механіках зміна складності часто

відбувається стрибкоподібно при досягненні певного порогу (наприклад, штраф

нараховується лише коли здоров’я падає нижче 50%). Нечітке моделювання

усуває ці розриви, створюючи безперервну функцію залежності ймовірності

успіху від стану персонажа. Це підвищує реалізм симуляції, оскільки втома

накопичується поступово, а не виникає миттєво.

По-третє, цей підхід дозволяє ефективно здійснювати агрегацію

різнорідних вхідних даних. Стан персонажа в рольовій грі залежить від

багатьох факторів, які важко поєднати в єдину класичну формулу (наприклад,

фізичні поранення, магічне виснаження та моральний дух). Нечітка логіка,

завдяки використанню бази продукційних правил (ЯКЩО-ТО), дозволяє легко

комбінувати ці різнопланові параметри, моделюючи складні нелінійні взаємодії

між ними (наприклад, ситуацію, коли висока мораль компенсує фізичну втому

до певної межі).

1.4. Аналіз ігрової механіки Dungeons & Dragons 5e та проблематика її

автоматизації

Система Dungeons & Dragons 5th Edition (D&D 5e), випущена компанією

Wizards of the Coast у 2014 році, є найпопулярнішою настільною рольовою грою

у світі. Її механіка базується на принципі «Bounded Accuracy» (Обмежена

Точність), який встановлює жорсткі ліміти на числові бонуси персонажів та

складність завдань. Це робить гру збалансованою та доступною для новачків, але

водночас створює проблему низької гранулярності станів.

У базовій версії правил ефективність персонажа є бінарною: він або

повністю дієздатний (HP > 0), або перебуває у несвідомому стані (HP = 0).

Проміжні стани виснаження, болю чи психологічного тиску залишаються на

розсуд Майстра (Game Master) і рідко мають системне відображення.

18

1.4.1. Огляд існуючих засобів автоматизації D&D 5e

Сучасний ринок цифрових інструментів для D&D 5e є насиченим, проте

більшість рішень фокусуються на прямому перенесенні паперових правил у

цифровий формат без зміни парадигми розрахунків. Можна виділити три основні

групи додатків:

Цифрові компаньйони та довідники (на прикладі D&D Beyond) D&D

Beyond є офіційним цифровим інструментарієм, який автоматизує створення

персонажа та ведення листа героя.

Принцип роботи: Використовує жорстку детерміновану логіку. Якщо

персонаж отримує рівень, програма автоматично додає фіксовані значення (+1

до атаки, +5 до HP).

Недолік у контексті дослідження: Система ідеально рахує статичні

бонуси, але не має вбудованих механізмів для динамічної зміни параметрів під

час бою залежно від контексту (наприклад, система не зменшує шанс влучання,

якщо у персонажа залишилося 10% здоров’я).

Віртуальні ігрові столи (VTT — Virtual Tabletop Systems) До цієї категорії

належать платформи Roll20, Foundry VTT та Fantasy Grounds.

Принцип роботи: Ці системи симулюють кидок кубика та автоматично

порівнюють результат із класом обладунку (AC) цілі. Foundry VTT дозволяє

використовувати скрипти (макроси) для ускладнення логіки.

Недолік: Навіть із модулями автоматизації, VTT здебільшого оперують

чіткою логікою ("If HP < 50% then Apply Condition"). Вони не забезпечують

плавного переходу станів, який пропонує нечітка логіка, змушуючи гравців

стикатися з різкими "стрибками" складності.

Комп'ютерні рольові ігри (CRPG) Яскравими прикладами адаптації правил

5-ї редакції є відеоігри Baldur’s Gate 3 (Larian Studios) та Solasta: Crown of the

Magister.

19

Принцип роботи: Повна автоматизація всіх ігрових процесів. Solasta

вважається еталоном точного відтворення правил SRD 5.1 (System Reference

Document).

Проблематика: Попри високий рівень симуляції, ці ігри також страждають

від "синдрому термінатора". Персонаж з 1 HP у Baldur’s Gate 3 наносить таку ж

шкоду, як і повністю здоровий. Це прийнятно для відеогри, але знижує рівень

драматизму та реалізму, який цінується у настільних сесіях.

Застосування нечіткої логіки дозволяє перейти від "сліпого" випадку до

зважених стохастичних рішень. Замість того, щоб просто кидати кубик, система

спочатку оцінює контекст ситуації через нечіткий контролер.

На відміну від жорстких порогових значень (Hard Thresholds), де поведінка

системи змінюється стрибкоподібно (наприклад, штраф з'являється тільки коли

HP < 50%), нечіткі системи забезпечують градієнтну зміну складності. Це

дозволяє реалізувати такі механіки:

Динамічний поріг провалу (Fumble Range): Чим гірший стан персонажа

(визначається нечіткою змінною «Стан»), тим ширшим стає діапазон значень

кубика, що вважаються провалом (наприклад, не тільки 1, а й 1-3 або 1-5).

Адаптивна складність (DC): Складність перевірок на стресостійкість може

плавно зростати залежно від накопиченої втоми, а не змінюватися сходинками.

Такий підхід наближає комп’ютерну симуляцію до роботи досвідченого

Майстра Підземель (Dungeon Master), який інтуїтивно підвищує ризики для

гравців у драматичні моменти, керуючись не сухими таблицями, а відчуттям

ситуації.

1.4.2. Критичний аналіз механіки Hit Points та Armor Class у контексті

моделювання реальності

Незважаючи на популярність, механіка D&D 5e містить ряд спрощень, які

ускладнюють створення реалістичної симуляції стану персонажа. Головними з

них є абстракція здоров'я та статичність захисту.

20

Проблема лінійності шкали здоров'я (Hit Points) У системі D&D очки

здоров’я (HP) не є прямим еквівалентом фізичних пошкоджень. Згідно з книгою

правил (Player’s Handbook), HP відображають комбінацію фізичної витривалості,

ментальної стійкості та «удачі», що дозволяє уникати смертельних ударів. Проте,

математично ця шкала реалізована як простий лічильник:

HPcurrent = HPmax − Damage

Доки HPcurrent > 0, персонаж функціонує зі 100% ефективністю. Це

створює парадоксальні ситуації:

Воїн, що втратив 99% здоров'я (1 HP залишилося), рухається з повною

швидкістю і б'є з повною силою.

Відсутній механізм «больового шоку» або «адреналінового сплеску»

(окрім рідкісних класових здібностей).

Така дискретність («живий»/«непритомний») є зручною для настільної

гри, щоб не перевантажувати гравців обчисленнями, але для комп'ютерної

моделі, здатної обробляти складні алгоритми, це є значним спрощенням, яке

знижує імерсивність.

Статичність Класу Обладунку (Armor Class) Показник Armor Class (AC)

визначає складність влучання по персонажу. У D&D 5e він є константою:

𝐴𝐶 = 10 + 𝐷𝑒𝑥𝑚𝑜𝑑 + 𝐴𝑟𝑚𝑜𝑟𝑏𝑜𝑛𝑢𝑠 + 𝑆ℎ𝑖𝑒𝑙𝑑

Цей показник не змінюється в залежності від втоми персонажа. У

реальності ж здатність бійця захищатися (блокувати удари щитом, ухилятися)

прямо корелює з його фізичним станом. Виснажений персонаж повинен ставати

легшою ціллю, проте базова механіка гри це ігнорує. Таким чином, проведений

аналіз виявив фундаментальне протиріччя в найпопулярнішій рольовій системі:

наявність розвиненої математичної моделі для розрахунку ймовірностей (d20

System) при повній відсутності математичного апарату для моделювання

динаміки психофізичних станів. Це підтверджує необхідність розробки

зовнішнього програмного модуля, який компенсував би ці недоліки без

порушення балансу гри, використовуючи методи обчислювального інтелекту.

21

Висновки до Розділу 1

У першому розділі проведено комплексний аналіз теоретико-

методологічних засад моделювання ігрових процесів та обґрунтовано вибір

математичного апарату. Основні результати полягають у наступному:

Проаналізовано особливості стохастичних процесів в іграх та встановлено,

що класичні методи (генератори рівномірного розподілу, булева логіка) не

дозволяють повною мірою реалізувати глибину симуляції. Вони призводять до

надмірної дискретності ігрового процесу, де стани персонажа змінюються

стрибкоподібно, знижуючи реалістичність моделі.

Здійснено критичний огляд механіки рольової системи Dungeons &

Dragons 5e. Виявлено проблему «лінійності ресурсів» (Hit Points) та статичності

захисних характеристик (Armor Class), які не враховують накопичення втоми та

стресу. Доведено, що існуючі засоби автоматизації (VTT, цифрові довідники)

лише відтворюють ці недоліки в цифровому форматі, не пропонуючи якісно

нових алгоритмів симуляції.

Обґрунтовано доцільність застосування теорії нечітких множин як

ефективного інструменту для формалізації лінгвістичних понять предметної

області («Критичний стан», «Ризик», «Паніка»). Це дозволяє комп’ютерній

системі оперувати категоріями, наближеними до людського сприйняття, та

забезпечити плавні переходи між станами.

Визначено алгоритм нечіткого виведення Мамдані (Mamdani) як

пріоритетний для реалізації поставленої задачі. На відміну від алгоритму Сугено,

він забезпечує високу інтерпретованість бази знань, що дозволяє прямо

переносити експертні правила настільної гри у програмний код.

Сформульовано концепцію гібридної системи, де нечіткий контролер

виступає надбудовою над базовою механікою D&D. Це стало теоретичним

підґрунтям для проєктування архітектури програмного засобу «D&D Assistant»,

розробку якого описано в наступному розділі.

22

РОЗДІЛ 2. ПРОЄКТУВАННЯ ТА РЕАЛІЗАЦІЯ СИСТЕМИ НЕЧІТКОГО

ВИВЕДЕННЯ ДЛЯ ІГРОВОГО ДОДАТКУ

У другому розділі обґрунтовано вибір інструментальних засобів розробки,

описано архітектуру програмного комплексу «D&D Assistant» та детально

розглянуто реалізацію модуля нечіткої логіки. Описано алгоритми фазифікації

вхідних даних, базу правил та методи дефазифікації, що дозволяють

трансформувати якісні оцінки стану персонажа в кількісні ігрові модифікатори.

Також наведено структуру клієнт-серверної взаємодії, що забезпечує

синхронізацію ігрових станів у локальній мережі.

2.1. Обґрунтування вибору інструментальних засобів розробки

Для реалізації системи підтримки прийняття рішень було проведено

порівняльний аналіз сучасних технологій створення десктопних додатків та

бібліотек для наукових обчислень. Головними критеріями вибору були:

швидкість розробки, наявність спеціалізованих математичних модулів та

кросплатформеність.

2.1.1. Мова програмування Python та наукові бібліотеки

В якості основної мови програмування обрано Python 3.x. Цей вибір

зумовлений домінуванням Python у сфері Data Science та штучного інтелекту.

Ключовим фактором стала наявність бібліотеки scikit-fuzzy (версія 0.4.2).

• scikit-fuzzy: Це спеціалізований інструментарій, побудований на базі NumPy,

який містить готові реалізації алгоритмів нечіткого виведення. Використання

цієї бібліотеки дозволило уникнути написання низькорівневого коду для

розрахунку центроїдів та інтегрування площ під кривими, зосередившись на

проєктуванні бази знань (Rules Base).

23

• NumPy: Використовується для високоефективних векторних операцій з

масивами даних, що є необхідним для дискретизації універсумів лінгвістичних

змінних.

Альтернативою було використання мови C++ або C#, проте реалізація нечіткого

контролера на цих мовах вимагала б значно більших часових витрат на розробку

математичного ядра «з нуля».

2.1.2. Середовище розробки графічного інтерфейсу (GUI)

Для створення інтерфейсу користувача обрано бібліотеку PySide6 —

офіційні прив'язки (bindings) фреймворку Qt для Python. Порівняно з простішими

бібліотеками, такими як Tkinter або PySimpleGUI, PySide6 надає ряд суттєвих

переваг для розробки складного ігрового інструментарію:

• Сигнально-слотова архітектура (Signals & Slots): Дозволяє реалізувати

реактивний інтерфейс. Зміна значення на слайдері «Здоров’я» (Signal) миттєво

викликає перерахунок нечіткої моделі (Slot) без блокування основного потоку

програми.

• Стилізація (QSS): Можливість використання каскадних таблиць стилів

дозволила реалізувати темну тему оформлення (Dark Mode), що є стандартом для

додатків, які використовуються під час ігрових сесій у приміщеннях з

приглушеним світлом.

• Розширюваність: Наявність віджетів для роботи з графікою дозволила

інтегрувати візуалізацію функцій належності безпосередньо у вікно програми.

2.1.3. Архітектурні рішення мережевої взаємодії

Оскільки система передбачає взаємодію двох ролей — Майстра (сервер) та

Гравця (клієнт), було реалізовано клієнт-серверну архітектуру на базі сокетів

(TCP/IP Sockets). Вибір протоколу TCP (на відміну від UDP, що часто

використовується в динамічних іграх) зумовлений вимогою до цілісності даних.

24

У настільній рольовій грі швидкість реакції у мілісекунди не є критичною,

натомість втрата пакету з інформацією про критичний стан персонажа є

неприпустимою. Реалізація мережевого обміну виконана з використанням

модуля socket стандартної бібліотеки Python та багатопотоковості (QThread) для

запобігання «зависанню» інтерфейсу під час очікування з'єднання.

2.2. Програмна реалізація компонентів системи

Фізично структуру проєкту організовано у вигляді окремих модулів, кожен

з яких відповідає за свою функціональну область: обробку даних, мережеву

взаємодію та математичні обчислення. Втім, архітектура додатку побудована за

принципом централізованого керування через графічний інтерфейс (GUI).

Клас головного вікна виступає ядром системи, яке ініціалізує всі підсистеми при

запуску. Взаємодія між компонентами реалізована через подійно-орієнтований

механізм (Event-driven architecture) з використанням сигналів та слотів

бібліотеки Qt. Це означає, що потік даних нерозривно пов'язаний з діями

користувача в інтерфейсі, тому коректна робота та верифікація алгоритмів

можливі лише за умови запуску графічної оболонки програми.

2.2.1. Точка входу та модуль вибору ролі (App)

Модуль core/app.py реалізує стартовий компонент системи. Клас App, що

наслідується від QWidget бібліотеки PySide6, виконує функцію Лаунчера

(Launcher). Його головним завданням є ідентифікація користувача та запуск

відповідного інтерфейсу: панелі керування для Майстра Підземель (DM) або

спрощеного вікна для Гравця.

Призначення та архітектурна роль На відміну від класичних монолітних

додатків, «D&D Assistant» використовує розділену архітектуру інтерфейсу. Клас

App не містить бізнес-логіки гри, а відповідає виключно за маршрутизацію та

керування життєвим циклом вікон.

25

Основні функції модуля:

1. Розділення прав доступу: Користувач свідомо обирає роль натисканням кнопки,

що ініціює завантаження різних наборів віджетів (PlayerMainWindow або

DM_MainWindow).

2. Стилізація (Theming): Саме в цьому класі задається глобальна таблиця стилів

(QSS), що формує візуальний стиль "Dark Fantasy" (темно-синій фон, контрастні

кнопки).

3. Керування пам'яттю: Реалізовано механізм приховування лаунчера при відкритті

дочірнього вікна та його відновлення після завершення сесії.

Програмна реалізація

У лістингу нижче наведено реалізацію методу _open_sub_window, який

демонструє роботу з сигналами Qt для керування потоком виконання програми.

Лістинг 2.1. Реалізація класу-лаунчера App

from PySide6.QtWidgets import QWidget, QVBoxLayout, QPushButton, QLabel
from PySide6.QtCore import Qt
from ui.player.player_main_window import PlayerMainWindow
from ui.dm.dm_main_window import DM_MainWindow

class App(QWidget):
 """
 Головний віджет застосунку, який реалізує патерн 'Launcher'.
 Дозволяє обрати роль користувача перед завантаженням основних модулів.
 """
 def __init__(self, parent=None):
 super().__init__(parent)
 self.setWindowTitle("D&D Assistant: Вибір Ролі")

 # Налаштування стилів (CSS-like syntax)
 self.setStyleSheet("""
 QWidget { background-color: #263238; color: white; }
 QPushButton {
 font-size: 20px; font-weight: bold; border-radius: 15px;
 }
 """)

 # Ініціалізація UI елементів
 self._setup_ui()
 self.active_window = None # Посилання на активне дочірнє вікно

 def _launch_player(self):
 """Ініціалізація сесії Гравця"""
 self._open_sub_window(PlayerMainWindow)

 def _launch_dm(self):

26

 """Ініціалізація сесії Майстра"""
 self._open_sub_window(DM_MainWindow)

 def _open_sub_window(self, window_class):
 """
 Універсальний метод перемикання контексту.
 Приховує поточне вікно та створює нове.
 """
 self.active_window = window_class()

 # Підписка на сигнал знищення вікна для повернення в меню
 self.active_window.destroyed.connect(self._on_sub_window_closed)

 self.active_window.show()
 self.hide() # Лаунчер залишається в пам'яті, але зникає з екрану

 def _on_sub_window_closed(self):
 """Відновлення лаунчера після закриття ігрового вікна"""
 self.active_window = None
 self.show()

Такий підхід дозволяє ізолювати логіку Майстра від логіки Гравця, що

підвищує безпеку (гравець не може випадково отримати доступ до інструментів

редагування сценарію) та оптимізує використання ресурсів, завантажуючи лише

необхідні модулі.

Рисунок 2.1 – Головне вікно вибору ролі користувача

27

2.2.2. Модуль керування даними та мережевої синхронізації (DataManager)

Модуль core/data_manager.py реалізує рівень абстракції даних (Data Layer)

та забезпечує мережеву взаємодію в реальному часі. На відміну від класичних

архітектур, де клієнт і сервер є різними додатками, у розробленій системі

використано підхід Peer-to-Peer (P2P) hosting: кожен екземпляр програми може

виступати як сервером (для Майстра), так і клієнтом (для Гравця).

Для реалізації цього функціоналу модуль об'єднує веб-фреймворк Flask

(для обробки HTTP-запитів) та реляційну базу даних SQLite (для зберігання

статичної інформації про правила D&D).

Нижче наведено детальний опис ключових компонентів модуля.

А. Реалізація вбудованого сервера (Flask HTTP Server)

Серверна частина реалізована як легковажний веб-сервіс, що працює в

окремому потоці (threading). Це дозволяє програмі приймати запити від інших

гравців, не блокуючи головний цикл графічного інтерфейсу (Main Loop).

Використання глобального сховища db_store із блокуванням потоків

(threading.Lock) гарантує атомарність операцій запису.

Лістинг 2.2. Маршрутизація та обробка ігрових сесій (Server-Side)

@app.route('/session/new', methods=['POST'])
def create_session():
 """Створення нової ігрової кімнати"""
 data = request.json
 sid = data.get("id")
 with db_lock: # Блокування для thread-safety
 db_store["sessions"][sid] = data["data"]
 db_store["active_session_id"] = sid
 # Ініціалізація порожнього стану бою
 db_store["combat_state"][sid] = {
 "active": False, "round": 0, "tokens": {}
 }
 return jsonify({"success": True})

@app.route('/join', methods=['POST'])
def join_player():
 """Підключення гравця до існуючої сесії"""
 data = request.json
 sid, uid, p_data = data.get("sid"), data.get("uid"),
data.get("player_data")
 with db_lock:
 if sid in db_store["sessions"]:

28

 db_store["sessions"][sid]["players"][uid] = p_data
 # Додавання системного логу про приєднання
 log = {"type": "JOIN", "content": f"{p_data['name']} приєднався!",
"sender_id": "SYS"}
 db_store["sessions"][sid]["logs"].append(log)
 return jsonify({"success": True})
 return jsonify({"error": "No session"}), 404

Б. Архітектура класу DataManager (Singleton)

Клас DataManager реалізує патерн Singleton (Одинак), що гарантує

існування лише одного екземпляра менеджера даних у пам'яті програми. Це

критично важливо, оскільки він керує підключенням до бази даних SQLite та

мережевими сокетами.

Метод _init_once виконує подвійну функцію: запускає локальний Flask-

сервер у фоновому режимі та ініціалізує зв'язок з базою даних правил (5e SRD).

Лістинг 2.3. Ініціалізація та керування життєвим циклом

class DataManager(QObject):
 _instance = None

 def __new__(cls, *args, **kwargs):
 """Реалізація патерну Singleton"""
 if cls._instance is None:
 cls._instance = super(DataManager, cls).__new__(cls)
 cls._instance._init_once()
 return cls._instance

 def _init_once(self):
 """Одноразова ініціалізація компонентів"""
 super().__init__()
 self.user_id = "USER_" + str(uuid.uuid4())[:4].upper()

 # Автоматичний запуск локального сервера
 self.start_server()

 # Підключення до локальної БД SQLite
 self.db_path = os.path.join(project_root, "dnd_data.sqlite3")
 loaded = self._load_data_from_sqlite()

 # Якщо БД порожня або відсутня - завантаження з GitHub
 if not loaded:
 self._seed_db_from_github()

В. Інтеграція з базою даних правил (SQLite & GitHub Sync)

Унікальною особливістю системи є гібридний механізм роботи з даними.

Основне джерело — це локальний файл dnd_data.sqlite3. Однак, якщо він

відсутній, система автоматично завантажує актуальні JSON-файли з відкритого

29

репозиторію GitHub (5e-database) і заповнює таблиці. Це забезпечує

автономність додатку (може працювати без інтернету після першого запуску).

def _seed_db_from_github(self):
 """Завантаження правил з віддаленого репозиторію"""
 conn = sqlite3.connect(self.db_path)
 cursor = conn.cursor()

 # Створення таблиць для кожної категорії (раси, класи, закляття)
 for table_name in self.FILES_MAP.keys():
 cursor.execute(
 f'CREATE TABLE IF NOT EXISTS "{table_name}" (index_name TEXT
PRIMARY KEY, name TEXT, data JSON)')

 # Fetch даних через HTTP requests
 for table_name, filename in self.FILES_MAP.items():
 url = f"{self.GITHUB_RAW_BASE}/{filename}"
 try:
 resp = requests.get(url, timeout=10)
 if resp.status_code == 200:
 for item in resp.json():
 # Збереження JSON-blob у базу
 cursor.execute(f'INSERT OR REPLACE INTO "{table_name}"
VALUES (?, ?, ?)',
 (item['index'], item['name'],
json.dumps(item)))
 except:
 pass
 conn.commit()

Г. Синхронізація бойового стану (Combat State)

Метод update_combat_state відповідає за реплікацію змін на полі бою.

Логіка методу адаптивна:

• Якщо користувач є Хостом (Майстром): він записує зміни безпосередньо у

локальну змінну db_store (з використанням Lock).

• Якщо користувач є Клієнтом: він відправляє POST-запит на сервер Майстра,

який потім розсилає оновлення іншим учасникам.

Лістинг 2.5. Адаптивна логіка оновлення стану

def update_combat_state(self, p):
 """Оновлення позицій токенів та черги ходів"""
 if not self._current_session_id: return

 if self.is_host:
 # Прямий запис у пам'ять (Server-side logic)
 with db_lock:
 st = db_store["combat_state"].get(self._current_session_id)
 if st:
 if "tokens" in p:

30

 st["tokens"].update(p["tokens"])
 else:
 st.update(p)
 else:
 # Відправка запиту на сервер (Client-side logic)
 requests.post(f"{self.server_url}/combat/update",
 json={"sid": self._current_session_id, "state": p})

Така архітектура дозволяє реалізувати складні ігрові механіки, такі як

переміщення токенів на карті, кидки ініціативи та обмін повідомленнями,

забезпечуючи при цьому єдину "точку правди" (Single Source of Truth) на стороні

Майстра.

2.3 Концептуальна модель та алгоритм оцінки стану персонажа

Розроблена система базується на концепції «Спіралі Смерті» (Death Spiral)

— ігрової механіки, де погіршення стану персонажа призводить до зниження

його ефективності, що, у свою чергу, підвищує ризик подальших травм. Для

реалізації цієї механіки було обрано об’єктно-орієнтований підхід та мову

програмування Python з використанням бібліотеки наукових обчислень scikit-

fuzzy.

Центральним елементом обробки даних виступає клас FuzzyLogic,

розташований у модулі core/fuzzy_logic.py. Цей клас реалізує патерн «Singleton»

для ініціалізації системи нечіткого виведення (змінна _sim), що дозволяє

уникнути повторної побудови правил при кожному зверненні до системи,

оптимізуючи обчислювальні ресурси.

Перед етапом нечіткого виведення система виконує попередню обробку

«сирих» даних (Pre-processing). У методі calculate_game_state реалізовано

алгоритм визначення «найслабшої ланки». Вхідними параметрами є:

1. Здоров’я (HP): фізична цілісність персонажа.

2. Втома (Fatigue): рівень виснаження.

3. Мораль (Morale): психологічна стійкість.

Система нормалізує ці показники до відсоткової шкали (0..100%), після

чого визначає інтегральний показник worst_pct за формулою:

31

Rworst=min(HP%,Fatigue%,Morale%)

Цей підхід дозволяє змоделювати ситуацію, коли навіть фізично здоровий,

але морально зломлений персонаж (або вкрай виснажений) потрапляє у зону

ризику. Саме значення worst_pct передається на вхід нечіткого контролера.

2.3.1 Реалізація модуля нечіткої логіки: лінгвістичні змінні та функції

належності

Математичним ядром системи є визначення лінгвістичних змінних та їх

функцій належності. У розробленому програмному забезпеченні простір

міркувань розбито на три складові: антецедент (вхід) та два консеквенти

(виходи).

2.3.2. Побудова та обґрунтування вхідної лінгвістичної змінної (Antecedent)

Ключовим етапом проєктування нечіткого контролера є етап фазифікації

(fuzzification) — процес перетворення чітких вхідних даних (crisp values) у

нечіткі лінгвістичні змінні. Від коректності вибору вхідних змінних, їхнього

універсуму та налаштування функцій належності безпосередньо залежить

адекватність реакції системи на зміни ігрового середовища.

У розробленій системі «D&D Assistant» базовою вхідною змінною

(Antecedent) визначено змінну resource_pct, яка відображає інтегральний

показник життєздатності персонажа. Вибір саме відсоткового, а не абсолютного

значення, зумовлений необхідністю універсалізації системи: персонаж 1-го рівня

з 10 HP та персонаж 20-го рівня з 200 HP повинні підпорядковуватися однаковим

законам стресу та втоми.

Універсум міркувань (Universe of Discourse) Універсум для змінної

resource_pct визначено як дискретну множину цілих чисел на інтервалі

U=[0,100], що відповідає відсотковій шкалі заповнення ресурсу. У програмному

коді це реалізовано за допомогою бібліотеки NumPy:

U={x∈Z∣0≤x≤100}

32

Така дискретизація (крок 1%) є достатньою для ігрових задач, оскільки

менші зміни не є відчутними для гравця, а більша точність призвела б до

невиправданих обчислювальних витрат.

При проєктуванні функцій належності (Membership Functions, MF)

особливу увагу було приділено нелінійності сприйняття ризику. З точки зору

психології гравця та балансу гри, діапазон від 100% до 50% ресурсу є «зоною

комфорту», де зміни стану мало впливають на прийняття рішень. Натомість,

діапазон 0–40% є критичним, де кожен втрачений відсоток суттєво змінює

ситуацію. Саме тому щільність лінгвістичних термів у нижньому регістрі

універсуму значно вища.

Для опису семантики змінної resource_pct розроблено нечітке розбиття

(Fuzzy Partitioning) з чотирьох термів: «Смертельна небезпека», «Критичний

стан», «Ризик» та «Безпека». Розглянемо математичну природу та обґрунтування

кожного з них детальніше.

1. Терм «Смертельна небезпека» (Deadly)

Цей терм описує стан персонажа, що перебуває на межі загибелі або повної

недієздатності. Для моделювання цього стану обрано трапецієподібну функцію

належності (Trapezoidal Membership Function – trapmf).

Математично ця функція задається вектором параметрів P=[a,b,c,d], де у

нашому випадку [0,0,3,5]. Аналітичний вигляд функції:

μdeadly(x)=⎩⎨⎧0,b−ax−a,1,d−cd−x,0,x<aa≤x<bb≤x≤cc<x≤dx>d

Оскільки a=b=0, лівий схил функції вироджується у вертикальну пряму, що

є логічним, адже значення менше 0% неможливі в межах даного універсуму.

• Інтервал ядра (Core): [0,3]. На цьому відрізку μdeadly(x)=1. Це означає, що будь-

який стан ресурсу від 0% до 3% система трактує як «абсолютну смертельну

небезпеку». Це зроблено для гарантування того, що при мінімальних значеннях

здоров'я механіка гри накладатиме максимальні штрафи без жодних пом'якшень.

• Інтервал носія (Support): [0,5]. Починаючи з 3% і до 5%, функція лінійно спадає

до нуля. Це створює дуже вузьку, але важливу перехідну зону. Якщо у персонажа

33

4% здоров'я, він все ще значною мірою перебуває у зоні смертельної небезпеки

(μ=0.5), але вже починає діяти логіка наступного терму.

Вибір трапецієподібної форми замість трикутної тут критично важливий: нам потрібна "зона

плато" біля нуля, щоб гарантувати найжорсткіші умови для гравця, який ігнорує критичний

стан персонажа.

2. Терм «Критичний стан» (Critical)

Цей терм відповідає важким пораненням або сильному виснаженню, коли

персонаж ще дієздатний, але його ефективність має бути суттєво знижена. Для

опису використано трикутну функцію належності (Triangular Membership

Function – trimf).

Параметри функції: [3,10,20]. Аналітично функція описується як:

μcritical(x)=max(min(10−3x−3,20−1020−x),0)

• Ліва основа (3%): Точка початку зростання функції співпадає з точкою початку

спадання попереднього терму (deadly). Це забезпечує неперервність покриття

універсуму.

• Вершина (Peak, 10%): Це точка, де μcritical(x)=1. Значення 10% обрано як

еталонне для поняття "критичний стан". Саме при 10% ресурсу система

максимально впевнена, що персонаж перебуває в цьому стані.

• Права основа (20%): Точка, де вплив цього терму зникає.

Використання асиметричного трикутника (відстань від лівої основи до піку

– 7%, від піку до правої – 10%) відображає динаміку ігрового процесу: вхід у

критичний стан (спуск HP) відчувається гравцем гостріше, ніж вихід з нього.

Також цей терм має значну зону перекриття (overlap) з наступним термом, що

забезпечує плавність зміни складності.

3. Терм «Ризик» (Risky)

Терм «Ризик» виступає буфером між безпечним станом та критичними

кондиціями. Це зона підвищеної уваги, де гравець має почати хвилюватися, але

ще не панікувати. Описується симетричною трикутною функцією (trimf) з

координатами [15,30,45].

34

• Діапазон невизначеності: Інтервал носія [15,45] є найширшим серед усіх

трикутних функцій у системі. Це відображає високу варіативність ситуацій у

середньому діапазоні ресурсів.

• Перекриття:

o Зліва (15-20%): перекривається з термом critical. У цій зоні діє змішана логіка:

персонаж вже не в "критичному" стані, але ще не повністю перейшов у стан

простого "ризику".

o Справа (30-45%): значне перекриття з термом safe.

Вершина на рівні 30% є психологічним порогом для багатьох гравців (приблизно

третина здоров'я), що робить цей вибір обґрунтованим з точки зору когнітивного

сприйняття гри.

4. Терм «Безпека» (Safe)

Для опису стану комфорту, повних сил та відсутності загроз використано

S-подібну функцію належності (Sigmoidal Membership Function – smf).

Параметри функції: [30,50].

На відміну від трикутних чи трапецієподібних функцій, S-подібна функція

моделює насичення.

𝜇𝑠𝑎𝑓𝑒(𝑥) = ⎩⎨⎧0,2(50 − 30𝑥 − 30)2,1 − 2(50 − 3050 − 𝑥)2,1,𝑥 ≤

3030 < 𝑥 ≤ 4040 < 𝑥 < 50𝑥 ≥ 50

• Початок зростання (30%): Співпадає з вершиною терму risky. Це точка

біфуркації, де система починає розглядати стан як потенційно безпечний.

• Точка перегину (40%): Значення, при якому ступінь належності дорівнює 0.5.

• Насичення (50%): Починаючи з 50% і до 100%, функція повертає 1.

Вибір smf замість трапеції (trapmf) обумовлений бажанням отримати

нелінійний приріст відчуття безпеки. В іграх різниця між 30% і 40% здоров'я

відчувається значно сильніше, ніж між 80% і 90%. S-подібна крива ідеально

моделює цей ефект: швидке зростання впевненості при виході з зони ризику і

стабілізація при досягненні половини ресурсу. Всі значення >50% для нечіткої

логіки є еквівалентними, що спрощує обчислення і відповідає логіці гри:

35

повністю здоровий персонаж не отримує додаткових бонусів порівняно з просто

"добре почуваючим себе".

Аналіз перекриття термів (Fuzzy Overlap) Важливою характеристикою

розробленої вхідної змінної є відсутність "білих плям" на універсумі. Сума

функцій належності в будь-якій точці універсуму прагне до ∑μ(x)≥1 (але не

обов'язково дорівнює 1, як у ймовірнісних підходах).

Розглянемо точку x=18% (ресурс персонажа):

1. Підставляємо у функцію critical: μcritical(18) дає мале, але ненульове значення

(спадаючий схил).

2. Підставляємо у функцію risky: μrisky(18) дає значення на зростаючому схилі.

3. Функції deadly та safe у цій точці дорівнюють 0.

Таким чином, при 18% здоров'я спрацьовують одночасно два правила бази

знань (одне пов'язане з критичним станом, інше з ризиком), але з різною вагою.

Це дозволяє системі згенерувати вихідний результат, який є "середнім зваженим"

між цими станами, забезпечуючи ту саму плавність геймплею, яка була

поставлена за мету дослідження.

Така конфігурація вхідної змінної дозволяє охопити весь спектр можливих

ігрових ситуацій, акцентуючи увагу на драматичних моментах (низький рівень

HP) та нівелюючи мікроменеджмент у спокійних станах.

2.3.3. Побудова та семантика вихідних лінгвістичних змінних (Consequents)

Результатом роботи нечіткого контролера є формування вихідних

лінгвістичних змінних (консеквентів), які визначають параметри модифікації

ігрового середовища. У той час як вхідна змінна описує стан системи (наскільки

все погано?), вихідні змінні формують реакцію системи (що саме зміниться у

правилах гри?).

У розробленій системі «D&D Assistant» визначено дві вихідні змінні:

fumble_limit (Поріг провалу) та panic_dc (Складність паніки). Вони обрані таким

чином, щоб впливати на дві різні площини ігрового процесу: механічну

36

(ймовірність успіху дії) та психологічну (здатність персонажа контролювати

себе).

1. Змінна fumble_limit (Поріг провалу)

У класичних правилах D&D 5-ї редакції «критичний провал» (Critical Miss

або Fumble) відбувається лише при випадінні значення «1» на 20-гранному

кубику (d20). Це фіксована ймовірність P(fail)=5%, яка не залежить від стану

персонажа. Змінна fumble_limit призначена для динамічної зміни цієї

ймовірності. Вона визначає верхню межу діапазону чисел на кубику, які

вважаються автоматичною невдачею.

Універсум міркувань: Універсум змінної визначено як дискретну множину

цілих чисел Y1={1,2,...,10}. Максимальне значення 10 означає, що у найгіршому

випадку ймовірність критичного провалу зростає до 50% (P=2010), що симулює

повну втрату координації та боєздатності.

Для цієї змінної розроблено три лінгвістичні терми:

• Терм «Норма» (normal): Відповідає стандартним правилам гри, де провалом є

лише одиниця. Математично описується виродженою трикутною функцією

(trimf) з координатами [1,1,1].

μnormal(y)={1,0,y=1y =1

Така «гостра» функція (Singleton function) необхідна для того, щоб у

безпечному стані система гарантовано повертала значення 1, не вносячи

спотворень у базову механіку гри.

• Терм «Підвищений» (elevated): Описує стан легкої дезорієнтації або тремору,

коли ризик помилки зростає. Використано трикутну функцію (trimf) на інтервалі

[1,3,5].

o Пік функції припадає на значення 3. Це означає, що при активації цього правила

(наприклад, у стані «Ризик») центр тяжіння (Center of Gravity) зміщуватиметься

до значення 3, розширюючи діапазон провалу до 1–3 (ймовірність 15%).

o Симетричність функції відносно трійки дозволяє плавно змішувати цей стан як з

«нормою», так і з «екстремальним» станом.

37

• Терм «Екстремальний» (extreme): Відображає катастрофічну втрату контролю

над ситуацією. Описується трапецієподібною функцією (trapmf) з координатами

[4,8,10,10].

o Ядро функції (Core): [8,10]. На цьому відрізку ступінь належності дорівнює 1. Це

гарантує, що при смертельній небезпеці (коли resource_pct ≈0) поріг провалу

буде максимальним (8–10).

o Використання трапеції забезпечує ефект «насичення»: як тільки стан персонажа

стає критичним, складність гри досягає плато і не може зростати далі (межа

універсуму — 10).

2. Змінна panic_dc (Складність паніки)

Ця змінна вводить у гру механіку стресу, відсутню в базових правилах

D&D (або присутню опціонально). Вона визначає складність (Difficulty Class,

DC) рятівного кидка (Saving Throw), який має зробити гравець, щоб уникнути

панічної втечі або ступору.

Універсум міркувань: Універсум змінної — це шкала складності D&D: Y2

=[0,20].

• 0 — перевірка не потрібна (автоматичний успіх).

• 10 — середня складність (доступна більшості).

• 20 — дуже висока складність (доступна лише героям з високими

характеристиками).

Визначено три лінгвістичні терми для цієї змінної:

• Терм «Відсутня» (none): Відповідає спокійному стану. Описується трикутною

функцією (trimf) з координатами [0,0,5]. Пік функції знаходиться в точці 0. Це

означає, що для здорового персонажа дефазифіковане значення (Crisp Output)

тяжітиме до нуля. У програмному коді передбачена логіка: якщо DC < 1,

перевірка не проводиться взагалі, що економить ігровий час.

• Терм «Середня» (medium): Описує стан нервозності, коли персонаж має

докласти зусиль для збереження концентрації. Використано симетричну

трикутну функцію (trimf) на інтервалі [5,10,15]. Центр функції (10) відповідає

базовій складності в системі D&D 5e (DC 10). Це робить даний терм

38

універсальним — він створює перешкоду, яку персонаж із середніми

характеристиками подолає з ймовірністю 50-60%.

• Терм «Висока» (high): Описує стан жаху або агонії. Для моделювання обрано

трапецієподібну функцію (trapmf) з координатами [10,15,20,20].

o Ядро: [15,20]. Значення DC від 15 до 20 вважаються «важкими» та «дуже

важкими».

o Плато: Ділянка [20,20] (правий край трапеції) забезпечує обмеження вихідного

значення максимумом системи. Навіть якщо вхідні показники свідчать про

«смертельну небезпеку» з надлишком (overkill), складність не перевищить

максимально можливу на кубику (20).

Кореляція між змінними: Варто зазначити, що хоча fumble_limit та

panic_dc є окремими вихідними змінними, вони семантично пов'язані через базу

правил. Зростання однієї величини зазвичай супроводжується зростанням іншої.

Проте використання двох окремих каналів виведення дозволяє гнучкіше

налаштовувати систему в майбутньому (наприклад, створити правила для

персонажа з рисую «Безстрашний», у якого зростатиме fumble_limit через

поранення, але panic_dc залишатиметься низьким).

Таким чином, обрана конфігурація вихідних змінних дозволяє системі

генерувати комплексний вплив на ігрову сесію: fumble_limit карає за ризиковані

дії через механіку ймовірностей, а panic_dc створює бар'єр для виконання дій

через механіку перевірок характеристик.

2.3.4 Розробка бази нечітких правил та алгоритм дефазифікації результатів

Якщо функції належності визначають «словник» системи, то база правил

(Rule Base) формує її «інтелект» та сценарії поведінки. У розробленій системі

«D&D Assistant» зв’язок між фізико-емоційним станом персонажа та ігровими

наслідками реалізовано через сукупність продукційних правил типу Mamdani.

Вибір алгоритму Мамдані зумовлений його здатністю моделювати

експертні знання людини (в даному випадку — досвідченого Майстра гри) у

39

формі зрозумілих лінгвістичних конструкцій «ЯКЩО — ТО» (IF-THEN), що

забезпечує прозорість логіки прийняття рішень.

2.3.6. Структура та семантика бази знань

База знань системи складається з чотирьох правил, які повністю

покривають простір вхідних станів змінної resource_pct. Це забезпечує повноту

системи (completeness) — для будь-якого значення вхідного ресурсу від 0 до

100% спрацює принаймні одне правило (або комбінація двох суміжних правил).

Програмна реалізація правил здійснена у класі FuzzyLogic наступним

чином:

Правило 1: Режим стабільності (Homeostasis)

IF Resource is Safe THEN Fumble is Normal AND Panic is None.

Аналіз: Це правило є фундаментальним для збереження балансу гри. У

стані «Безпека» (ресурс > 50%) система не повинна втручатися в ігровий процес.

Антецедент Safe активує консеквенти, що відповідають мінімальним значенням

(fumble=1, panic=0). Це гарантує, що здоровий персонаж грає за стандартними

правилами D&D 5e, без жодних штрафів.

Правило 2: Режим наростання загрози (Warning State)

IF Resource is Risky THEN Fumble is Elevated AND Panic is Medium.

Аналіз: Це правило реалізує механіку «м’якого втручання». Коли ресурс

падає до діапазону 15–45% (область дії терму Risky), система починає зміщувати

центр тяжіння вихідних множин.

• Fumble is Elevated: Поріг критичного провалу розширюється (тяжіє до 3). Це

симулює втрату концентрації: персонаж починає припускатися помилок там, де

раніше діяв бездоганно.

• Panic is Medium: З'являється необхідність перевірок на самовладання з помірною

складністю (DC 5–10).

Правила 3 та 4: Режим критичної відмови (Crisis & Saturation)

40

IF Resource is Critical THEN Fumble is Extreme AND Panic is High. IF

Resource is Deadly THEN Fumble is Extreme AND Panic is High.

Аналіз: Обидва правила відображають (map) низький рівень ресурсу на

максимально можливі штрафи. Об’єднання цих станів в одну групу реакцій

зумовлено ефектом «насичення» (saturation). З точки зору ігрової механіки,

різниця між станом «майже мертвий» (Critical) та «вмираючий» (Deadly) полягає

вже не в ступені штрафів (вони й так максимальні), а в терміновості надання

допомоги.

• При активації цих правил вихідна змінна fumble_limit прагне до значення 8–10

(ймовірність провалу до 50%).

• Змінна panic_dc прагне до 20 («Героїчна складність»), що робить паніку майже

неминучою для непідготовлених персонажів.

2.3.7. Агрегація та логічне виведення (Inference)

У процесі роботи системи, для конкретного значення вхідної змінної

(наприклад, x=25%), відбувається активація правил. Оскільки функції

належності перекриваються, одночасно можуть спрацьовувати декілька правил з

різним ступенем істинності (α).

Наприклад, для x=25%:

• Ступінь належності до Safe (μsafe) ≈0.

• Ступінь належності до Risky (μrisky) ≈0.8.

• Ступінь належності до Critical (μcritical) ≈0.2.

Система застосовує операцію Min-Max виведення:

1. Імплікація (Implication): Для кожного правила вихідна нечітка множина

«обрізається» на рівні ступеня істинності умови (оператор мінімуму). Тобто,

вихідна функція для правила «Ризик» буде усічена на рівні 0.8.

2. Агрегація (Aggregation): Усі усічені вихідні множини об’єднуються в одну

результуючу фігуру (оператор максимуму).

41

Цей механізм дозволяє отримати складну геометричну фігуру, яка містить

інформацію про внесок кожного правила. Якщо персонаж знаходиться між

«Ризиком» і «Критичним станом», результуюча фігура буде компромісом між

середніми та високими штрафами.

2.3.8. Дефазифікація та інтерпретація результатів

Останнім етапом роботи контролера є дефазифікація (Defuzzification) —

перетворення результуючої нечіткої множини у єдине скалярне число (crisp

value), придатне для використання в програмному коді гри.

У класі FuzzyLogic використано метод центроїда (Center of Gravity, COG),

який є найбільш поширеним у системах керування. Математично значення z∗

визначається як абсциса центру ваги площі під кривою функції належності

агрегованої множини μagg(z):

z∗=∫Zμagg(z)dz∫Zz⋅μagg(z)dz

Де Z — універсум вихідної змінної (наприклад, [1,10] для Fumble Limit).

Метод центроїда забезпечує головну перевагу системи — плавність зміни

вихідного сигналу. Навіть при незначній зміні вхідного ресурсу центр ваги

фігури зміщується поступово, що дозволяє уникнути різких стрибків складності,

характерних для порогової логіки.

Дискретизація та округлення Оскільки настільна рольова гра оперує

цілими числами (значення на кубиках), отримані дійсні числа (floats) необхідно

коректно інтерпретувати. У коді реалізовано наступний алгоритм:

calc_fumble = FuzzyLogic._sim.output['fumble_limit'] calc_dc =
FuzzyLogic._sim.output['panic_dc'] # Округлення до ігрових цілих чисел
fumble_range = max(1, int(round(calc_fumble))) panic_dc = int(round(calc_dc))

Математичне округлення (round): Використовується для знаходження

найближчого цілого числа. Це означає, що якщо нечітке виведення дає 1.6

(ближче до 2), то поріг провалу збільшиться.

42

Обмеження знизу (max(1, ...)): Гарантує, що fumble_limit ніколи не стане

меншим за 1 (адже в D&D «1» — це завжди провал). Це захисний механізм від

можливих артефактів обчислення на краях діапазону.

2.4. Програмна реалізація графічного інтерфейсу та механік взаємодії

Розробка користувацького інтерфейсу (UI) для рольової системи вимагає

вирішення специфічної проблеми: необхідності відображення великої кількості

різнорідних даних (статистика, мапа, чат, інвентар) без перевантаження

когнітивного сприйняття користувача. У цьому розділі описано підходи до

проєктування інтерфейсів для двох діаметрально протилежних ролей —

адміністратора (Майстра) та учасника (Гравця), а також розглянуто

низькорівневу реалізацію кастомних графічних компонентів, що забезпечують

інтерактивність системи

2.4.1. Реалізація інтерфейсу Майстра (DM_MainWindow)

Модуль ui/dm/dm_main_window.py реалізує головне робоче середовище

Майстра Підземель. Архітектурно це вікно побудоване за принципом «Single

Page Application» (SPA): основний каркас залишається незмінним, а центральна

область динамічно змінює вміст залежно від обраного розділу меню.

Такий підхід дозволяє Майстру миттєво перемикатися між керуванням

сервером, бойовою сценою та редактором предметів без відкриття нових вікон,

що критично важливо для підтримки темпу гри.

А. Композиція головного вікна

Клас DM_MainWindow використовує горизонтальне компонування

(QHBoxLayout), яке розділяє екран на дві функціональні зони:

1. Навігаційна панель (Side Menu): Реалізована у класі DMMenu

(ui/dm/dm_menu.py). Містить кнопки категорій («Хостинг», «Бій», «Інвентар»,

«Редактор»).

43

2. Область контенту (Content Area): Реалізована через віджет QStackedWidget. Це

контейнер, який зберігає всі сторінки в пам'яті, але відображає лише одну в

конкретний момент часу.

Лістинг 2.9. Структура класу DM_MainWindow

from PySide6.QtWidgets import QWidget, QHBoxLayout, QStackedWidget
from ui.dm.dm_menu import DMMenu
from ui.dm.dm_hosting.hosting_window import HostingWindow
from ui.dm.combat_manager_tab import CombatManagerTab
from ui.dm.inventory_manager_tab import InventoryManagerTab
... інші імпорти

class DM_MainWindow(QWidget):
 def __init__(self):
 super().__init__()
 self.setWindowTitle("D&D Assistant: Панель Майстра")
 self.resize(1200, 800) # Широкий формат для зручності

 # Основний макет: Меню зліва, Контент справа
 layout = QHBoxLayout(self)
 layout.setContentsMargins(0, 0, 0, 0)
 layout.setSpacing(0)

 # 1. Ініціалізація меню
 self.menu = DMMenu()
 layout.addWidget(self.menu)

 # 2. Ініціалізація стеку сторінок
 self.pages = QStackedWidget()
 self._init_pages()
 layout.addWidget(self.pages)

 # 3. Підключення навігації
 self.menu.page_changed.connect(self.switch_page)

 def _init_pages(self):
 """Ліниве або повне завантаження модулів"""
 # Сторінка 0: Хостинг (Керування сервером)
 self.hosting_tab = HostingWindow()
 self.pages.addWidget(self.hosting_tab)

 # Сторінка 1: Менеджер Бою (Ініціатива, HP, Карта)
 self.combat_tab = CombatManagerTab()
 self.pages.addWidget(self.combat_tab)

 # Сторінка 2: Менеджер Інвентаря
 self.inventory_tab = InventoryManagerTab()
 self.pages.addWidget(self.inventory_tab)

 def switch_page(self, index):
 """Слот перемикання активної вкладки"""
 self.pages.setCurrentIndex(index)

44

Б. Модуль керування сесією (HostingWindow)

Перша вкладка інтерфейсу (ui/dm/dm_hosting/hosting_window.py) є

панеллю керування сервером. Вона використовує DataManager для створення

нової ігрової сесії. Ключові елементи інтерфейсу:

• Індикатор статусу: Показує IP-адресу та порт (192.168.x.x:5000), які Майстер

диктує гравцям.

• Лог подій: QTextEdit, що в реальному часі виводить повідомлення («Grommash

приєднався», «Voron отримав пошкодження»). Оновлення логу відбувається

через таймер QTimer, який опитує DataManager.

• Список гравців: Таблиця, що дозволяє Майстру бачити всіх підключених

учасників та примусово відключати їх за потреби.

Рисунок 2.2 – Панель адміністратора (DM) та моніторинг підключень

В. Менеджер бою (CombatManagerTab)

Центральний елемент роботи Майстра — модуль

ui/dm/combat_manager_tab.py. Він інтегрує в собі найбільшу кількість

функціоналу:

1. Трекер ініціативи: Список, відсортований за спаданням результату кидка d20 +

Dex. Реалізовано механізм Drag & Drop для ручного коригування черги.

2. Бойова карта (Battle Map): Віджет BattleMapWidget, що дозволяє розміщувати

токени монстрів та гравців на сітці.

45

3. Панель монстрів: Дозволяє швидко додавати ворогів з бестіарію

(DataManager.get_bestiary()). При додаванні монстра система автоматично

генерує йому унікальний ID та окремий лічильник HP.

Цей модуль активно взаємодіє з класом FuzzyLogic. Коли Майстер змінює

HP монстра через слайдер, система автоматично розраховує його статус

(наприклад, "Fleeing" або "Enraged") і відображає це візуально, змінюючи колір

рамки токена.

Рисунок 2.3 – Панель конструктора бою (DM)

2.4.2. Функціональні підсистеми керування ігровим процесом (DM Logic)

Інтерфейс Майстра — це лише вершина айсберга. Основна програмна

логіка зосереджена у спеціалізованих класах-менеджерах, які відповідають за

симуляцію світу. Нижче розглянуто реалізацію ключових механік.

А. Підсистема керування боєм (Combat Manager)

Модуль ui/dm/combat_manager_tab.py реалізує скінченний автомат (Finite

State Machine), що керує фазами бою. Клас CombatManagerTab взаємодіє з

DataManager для синхронізації стану між клієнтами.

46

1. Алгоритм розрахунку ініціативи На відміну від статичного списку,

система реалізує динамічну чергу ходів. При натисканні кнопки "Roll

Initiative":

1) Система опитує всіх підключених гравців та активних NPC.

2) Для кожного об'єкта генерується випадкове число: R=d20+Initbonus.

3) Список сортується за спаданням результату методом

sort(key=lambda x: x['total'], reverse=True).

4) Сформована черга (turn_order) записується в DataManager і

розсилається всім клієнтам.

2. Керування сутностями на полі бою Для маніпуляції токенами реалізовано

методи додавання та видалення об'єктів. Коли Майстер додає монстра:

• Створюється унікальний ідентифікатор (uid), наприклад NPC_A1B2. Це дозволяє

мати на полі 5 гоблінів з однаковими іменами, але різними станами здоров'я.

• Об'єкт отримує координати (0,0) за замовчуванням і стає видимим на віджеті

карти.

Лістинг 2.10. Логіка додавання ворога до бойової сцени

def _add_creature_to_combat(self, creature_index, custom_name=None):
 """Інтеграція NPC у бойовий потік"""
 # Отримання шаблону з бестіарію
 creature_data = self.db.creature_bestiary.get(creature_index)

 # Генерація унікального ID
 uid = f"NPC_{str(uuid.uuid4())[:4]}"

 # Створення екземпляра зі своїм станом
 new_token = {
 uid: {
 "name": custom_name or creature_data['name'],
 "x": 0, "y": 0,
 "hp": creature_data['hp'], # Поточні HP
 "max_hp": creature_data['hp'], # Максимум для розрахунку %
 "type": "enemy",
 "color": "#D32F2F" # Червоний маркер ворога
 }
 }
 # Атомарне оновлення стану бою
 self.db.update_combat_state({"tokens": new_token})

Б. Підсистема конструктора сутичок (Encounter Builder)

47

Модуль ui/dm/encounter_builder_tab.py відповідає за підготовчу фазу. Він

вирішує проблему швидкого доступу до даних під час гри. Реалізовано паттерн

"Staging Area" (Зона підготовки):

• Лівий список: Повна база даних монстрів з фільтрацією (пошук за назвою, фільтр

за CR).

• Правий список: Поточний "драфт" сутички.

• Кнопка "Start Combat": Виконує пакетне перенесення (Batch Transfer) усіх

об'єктів з правого списку в активну бойову сцену.

Це дозволяє Майстру підготувати складну засідку з 10 ворогами заздалегідь і

активувати її одним натисканням у потрібний момент сюжету.

В. Редактори ігрового контенту (Content Editors)

Система надає інструменти для розширення базових правил без

необхідності правити код чи базу даних вручну.

1. Редактор предметів (ItemCreatorTab) Дозволяє створювати кастомні

артефакти. Реалізовано збереження JSON-структур, сумісних зі стандартним

інвентарем гравців. Важливою особливістю є можливість прив'язки бойових

маневрів до предметів (наприклад, меч, що дозволяє робити "Ривок"), що потім

враховується модулем DiceLogic.

2. Редактор сценаріїв (ScenarioTreeTab) Реалізує деревоподібну структуру

сюжету (Scenario Tree). Майстер може створювати вузли (сцени) та зв'язки між

ними.

• Кожен вузол містить текстовий опис та посилання на необхідних NPC.

• Це допомагає візуалізувати розгалуження історії, що є критичним для нелінійних

ігор.

Г. Серверна консоль та керування підключеннями

Модуль ui/dm/dm_hosting/hosting_window.py надає низькорівневий контроль над

мережевою сесією. Він реалізує функції:

• Kick Player: Примусове розірвання з'єднання з конкретним session_id.

• Broadcast Message: Відправка системних повідомлень (наприклад, "Пауза 5

хвилин") усім клієнтам через механізм push_session_update.

48

• QR-генерація: Використання бібліотеки qrcode для кодування поточної IP-

адреси сервера в зображення, що спрощує підключення мобільних пристроїв.

2.4.3. Реалізація клієнтського інтерфейсу Гравця (Player UI)

Модуль ui/player реалізує інтерфейс для кінцевого користувача — гравця.

На відміну від інтерфейсу Майстра, який насичений інструментами редагування,

клієнтська частина спроєктована за принципом «Read-Only & Reaction». Вона

фокусується на візуалізації поточного стану персонажа, який розраховується на

сервері, та наданні зручних інструментів для виконання ігрових дій (кидків

кубиків).

А. Архітектура головного вікна (PlayerMainWindow)

Клас PlayerMainWindow (ui/player/player_main_window.py) наслідує

структуру навігації Майстра, але з обмеженим набором вкладок. Інтерфейс

розділено на такі функціональні зони:

1. Картка персонажа (Character Sheet): Головний екран, що показує здоров'я,

характеристики та навички.

2. Інвентар (Inventory): Список спорядження з можливістю екіпірування

предметів.

3. Журнал (Logs): Чат сесії, куди приходять повідомлення від Майстра та

результати кидків.

Важливою архітектурною особливістю є механізм синхронізації (Polling

Loop). Оскільки гравець не має прямого доступу до бази даних (вона знаходиться

на комп'ютері Майстра), клас використовує QTimer для відправки регулярних

HTTP-запитів (GET /session/{id}) до сервера.

Лістинг 2.11. Логіка оновлення стану гравця

def _start_sync_loop(self):
 """Запуск циклу синхронізації з частотою 1 Гц"""
 self.sync_timer = QTimer(self)
 self.sync_timer.timeout.connect(self._fetch_server_state)
 self.sync_timer.start(1000)

 def _fetch_server_state(self):

49

 """Отримання актуальних даних від DataManager"""
 session_data = self.db_manager.get_session_updates(self.session_id)

 # Якщо HP змінилося на сервері (Майстер наніс шкоду)
 if session_data['hp_current'] != self.local_character.hp_current:
 self.character_tab.update_health_bar(session_data['hp_current'])

 # Візуальна реакція на пошкодження (червоний спалах)
 if session_data['hp_current'] < self.local_character.hp_current:
 self.show_damage_effect()

Б. Візуалізація стану та загроз (Character Display)

Вкладка CharacterDisplayTab є центральним елементом залучення гравця.

Тут реалізовано інтеграцію з модулем Fuzzy Logic на стороні клієнта.

• Індикатор загрози: Коли сервер повідомляє про зміну статусу (наприклад,

перехід у стан "Паніка"), інтерфейс змінює кольорову гаму рамки аватара та

показує відповідну іконку.

• Динамічні підказки: Система автоматично розраховує та показує поточні

модифікатори. Якщо персонаж виснажений, біля кнопки "Атака" з'являється

попередження: "Штраф -2 через втому".

В. Інтерактивна система кидків (Dice Roller)

Для забезпечення чесності гри реалізовано діалогове вікно RollDialog

(ui/dialogs/roll_dialog.py). Коли гравець натискає на характеристику (наприклад,

"Сила"):

1. Відкривається модальне вікно з 3D-анімацією кубика (або спрощеною 2D-

симуляцією).

2. Результат кидка відправляється на сервер через POST /update/logs.

3. Якщо випав Критичний Провал (Nat 1), система автоматично програє

звуковий ефект провалу і блокує інтерфейс на 1 секунду для драматичного

ефекту.

Г. Керування інвентарем

Модуль ui/player/inventory_tab.py дозволяє гравцю керувати ресурсами.

Реалізовано перевірку сумісності предметів:

• Гравець не може одягнути дві броні одночасно.

50

• При використанні зілля ("Potion of Healing"), клієнт відправляє запит на

сервер про видалення предмета та відновлення HP. Ця дія вимагає

підтвердження від сервера, щоб уникнути чітерства (Race Condition, коли

гравець п'є зілля двічі)

2.4.4. Реалізація клієнтського інтерфейсу Гравця (Player Client)

Модуль ui.player реалізує робоче місце гравця. Якщо інтерфейс Майстра

— це панель керування системою, то інтерфейс Гравця спроєктовано як

«Інформаційну панель» (Dashboard). Його головна мета — знизити когнітивне

навантаження на гравця, автоматизувавши підрахунок модифікаторів та

візуалізуючи критичні стани, що розраховуються нечітким контролером.

Архітектурно клієнт працює у режимі «Тонкого клієнта» (Thin Client):

основні обчислення станів відбуваються на стороні сервера (Майстра) або в ядрі

FuzzyLogic, а UI лише відображає результати та відправляє запити на дії.

А. Архітектура головного вікна (PlayerMainWindow)

Клас PlayerMainWindow (ui/player/player_main_window.py) є контейнером

для всіх функціональних вкладок. На відміну від DM-версії, тут реалізовано

механізм асинхронного опитування сервера (Polling). Оскільки протокол HTTP

не підтримує ініціювання з'єднання з боку сервера (Server Push) без використання

WebSockets, клієнт використовує таймер QTimer для регулярного запиту

оновлень.

Лістинг 2.11. Реалізація циклу синхронізації клієнта

class PlayerMainWindow(QMainWindow):
 def __init__(self):
 super().__init__()
 # ... ініціалізація UI ...

 # Таймер синхронізації (1 Гц)
 self.sync_timer = QTimer(self)
 self.sync_timer.timeout.connect(self._sync_with_server)
 self.sync_timer.start(1000)

 def _sync_with_server(self):

51

 """Отримання актуального стану світу"""
 if not self.db.current_session_id:
 return

 # GET-запит через DataManager
 updates = self.db.get_session_updates(self.db.current_session_id)

 # Оновлення логу подій
 if updates:
 self.logs_tab.append_new_logs(updates)

 # Синхронізація параметрів персонажа (HP, стани)
 my_data = self.db.get_my_character_data()
 self.char_display.update_stats(my_data)

Б. Візуалізація стану персонажа (Character Display)

Вкладка CharacterDisplayTab (ui/player/character_display_tab.py) — це

центральний екран гравця. Тут реалізовано візуальне відображення результатів

роботи нечіткої логіки.

• Динамічні індикатори: Замість текстового поля "HP: 5/20",

використовується прогрес-бар, який змінює колір (Зелений → Жовтий

→ Червоний) залежно від відсотка здоров'я.

• Візуалізація стресу: Окремий віджет відображає рівень "Моралі" та

"Втоми". Якщо FuzzyLogic повертає статус PANIC, навколо портрета

персонажа з'являється пульсуюча червона рамка (реалізовано через

QGraphicsEffect та анімацію QPropertyAnimation).

• В. Система інвентарю та екіпірування

• Модуль ui/player/inventory_tab.py дозволяє гравцю керувати своїм

спорядженням. Особливістю реалізації є система слотів:

• Предмети мають тип (Weapon, Armor, Consumable).

• Коли гравець натискає "Екіпірувати" (Equip), система перевіряє

конфлікти (наприклад, не можна одягнути два шоломи).

• При зміні зброї автоматично перераховуються модифікатори атаки, які

використовуються у вікні кидків.

Г. Інтерактивна система кидків (Roll System)

Модуль ui/dialogs/roll_dialog.py реалізує механіку взаємодії з

випадковістю. Система підтримує два режими кидків:

52

1. Швидкий кидок (Quick Roll): Натискання на навичку (наприклад,

"Атлетика") миттєво генерує результат і відправляє його в чат.

2. Складний кидок (Complex Roll): Відкриває діалогове вікно, де гравець

може додати ситуативні бонуси (наприклад, "+2 за допомогу друга") або

обрати тип кидка (з перевагою/недоліком).

Лістинг 2.12. Логіка відправки результату кидка

def perform_roll(self, skill_name, modifier):
 """Виконання кидка та відправка на сервер"""
 # Локальна генерація (Client-side prediction)
 d20_result = random.randint(1, 20)
 total = d20_result + modifier

 # Формування пакету події
 log_entry = {
 "type": "ROLL",
 "content": f"перевіряє {skill_name}: {d20_result} + {modifier} =
{total}",
 "result_value": total,
 "is_crit": d20_result == 20,
 "is_fumble": d20_result == 1
 }

 # Відправка на сервер через REST API
 self.db.push_session_update(self.session_id, log_entry)

Д. Бойова взаємодія та мапа

На вкладці мапи (BattleMapWidget) гравець має обмежені права доступу

порівняно з Майстром.

• Туман війни (Fog of War): Гравець бачить лише відкриті Майстром зони (або

лише свій токен, якщо реалізовано динамічне освітлення).

• Керування переміщенням: Гравець може перетягувати (Drag&Drop) тільки

свій токен. Спроба перемістити монстра або іншого гравця блокується на

рівні логіки віджета (if token.owner_id != self.user_id: return).

2.4.5. Реалізація інтерактивних компонентів та підсистеми візуалізації

Для забезпечення необхідного рівня інтерактивності стандартних віджетів

Qt виявилося недостатньо. Тому було розроблено ряд спеціалізованих

53

компонентів, що успадковують клас QWidget та перевизначають події

малювання (paintEvent) і обробки миші.

А. Віджет тактичної карти (BattleMapWidget)

Модуль ui/widgets/battle_map_widget.py є графічним ядром бойової

системи. Він відповідає за рендеринг ігрового поля, сітки та токенів персонажів.

Віджет реалізовано з використанням низькорівневого API QPainter, що

забезпечує високу продуктивність навіть при великій кількості об'єктів.

1. Алгоритм рендерингу (Rasterization Pipeline) Метод paintEvent

виконується при кожному оновленні кадру. Процес малювання складається з

трьох шарів:

1. Фон та Сітка: За допомогою циклів малюються вертикальні та

горизонтальні лінії. Використовується координатна прив'язка до сітки

(grid_size = 40px).

2. Токени: Система ітерує словник self.tokens. Для кожного об'єкта

розраховується його піксельна позиція: Px=Gridx×CellSize.

3. Інтерфейс виділення (Overlay): Якщо токен обрано (selected_token_uid),

навколо нього малюється контрастна рамка.

2. Асинхронне завантаження зображень Критичною особливістю є

підтримка відображення аватарів з інтернету. Оскільки завантаження картинки є

блокуючою операцією, використано клас QNetworkAccessManager для

асинхронних HTTP-запитів. Коли віджет зустрічає токен з URL-адресою:

1. Створюється запит GET.

2. Після завершення завантаження (finished signal) байти конвертуються у

QPixmap.

3. Зображення кешується у словнику self.image_cache, щоб уникнути

повторних запитів при перемальовуванні.

Лістинг 2.13. Реалізація методу малювання токенів (фрагмент)

def paintEvent(self, event):
 painter = QPainter(self)
 painter.setRenderHint(QPainter.Antialiasing) # Згладжування

 # ... (малювання сітки) ...

54

 for uid, data in self.tokens.items():
 # Трансформація координат: Grid -> Pixel
 x_px = data['x'] * self.grid_size
 y_px = data['y'] * self.grid_size
 rect = QRectF(x_px, y_px, self.grid_size, self.grid_size)

 # Отримання зображення з кешу
 pixmap = self.image_cache.get(uid)

 if pixmap:
 # Малювання аватара з обрізкою по колу (Clipping)
 path = QPainterPath()
 path.addEllipse(rect)
 painter.setClipPath(path)
 painter.drawPixmap(rect.toRect(), pixmap)
 painter.setClipping(False) # Скидання маски
 else:
 # Fallback: Малювання кольорового кола з літерою
 painter.setBrush(QColor(data.get('color', '#999')))
 painter.drawEllipse(rect)

Б. Модуль обробки кидків (DiceLogic)

Модуль core/dice_logic.py реалізує парсер текстових формул. Оскільки в

D&D використовуються складні комбінації кубиків (наприклад, 2d6 + 1d4 + 3),

було розроблено статичний метод roll, що використовує регулярні вирази.

Алгоритм роботи:

1. Вхідний рядок нормалізується (видаляються пробіли, приводиться до

нижнього регістру).

2. Регулярний вираз r"(\d*)d(\d+)([+-]\d+)?" розбиває рядок на групи:

кількість кубиків, тип кубика, модифікатор.

3. Генератор псевдовипадкових чисел random.randint емулює кидки.

4. Метод повертає кортеж (total, details), де details містить результати

кожного окремого кубика для прозорості гри.

Лістинг 2.14. Парсинг формули кидка

@staticmethod
 def roll(formula: str):
 """Парсинг рядка типу '2d20+5'"""
 match = re.match(r"(\d*)d(\d+)([+-]\d+)?", formula)

 count = int(match.group(1)) if match.group(1) else 1
 die_type = int(match.group(2))
 modifier = int(match.group(3)) if match.group(3) else 0

 # Генерація списку випадкових чисел

55

 rolls = [random.randint(1, die_type) for _ in range(count)]
 total = sum(rolls) + modifier

 return total, f"[{', '.join(map(str, rolls))}] {modifier:+}"

В. Система логування та фільтрації подій

Віджет GameLogTab (ui/game_log_tab.py) відповідає за відображення

історії гри. Важливою архітектурною деталлю є контекстна фільтрація. Клас

підтримує метод load_logs(is_dm, character_name), який фільтрує масив

повідомлень перед відображенням:

• Режим DM: Бачить усі повідомлення, включаючи приховані перевірки.

• Режим Гравця: Бачить лише публічні повідомлення (WORLD) та події, що

стосуються його персонажа. Це реалізовано через перевірку поля source у

структурі логу JSON.

56

РОЗДІЛ 3. АНАЛІЗ ЕФЕКТИВНОСТІ ТА ТЕСТУВАННЯ

3.1. Методика та умови проведення експерименту

Для підтвердження роботоздатності розробленого програмного комплексу

«D&D Assistant» та перевірки висунутих гіпотез щодо ефективності нечіткого

керування було розроблено комплексну програму випробувань.

Експериментальне дослідження спрямоване на вирішення двох задач: валідації

математичної моделі (чи коректно працює нечітка логіка?) та верифікації

програмної реалізації (чи стабільно працює додаток у мережі?).

3.1.1. Опис тестового стенда та конфігурація обладнання

Враховуючи клієнт-серверну архітектуру додатку, реалізовану на базі

мікрофреймворку Flask, тестування проводилося в умовах, максимально

наближених до реальної ігрової сесії (LAN-party). Для цього було розгорнуто

тестовий полігон із гетерогенним середовищем.

А. Апаратне забезпечення (Hardware Configuration) Тестовий стенд складався з

трьох вузлів:

1. Серверна станція (DM Station): Ноутбук під керуванням Windows 11 (CPU

Intel Core i5-1135G7, 16 GB RAM). На цьому вузлі запущено екземпляр

програми в режимі «Host». Він виконує роль центрального сховища даних

(SQLite) та обчислювального ядра FuzzyLogic.

2. Клієнтська станція 1 (Player PC): Віртуальна машина (VMware

Workstation), що імітує віддаленого гравця. Характеристики: 2 vCPU, 4 GB

RAM. Підключення через віртуальний мережевий міст (Bridged

Networking).

3. Клієнтська станція 2 (Mobile Client): Смартфон на базі Android 13,

підключений до спільної Wi-Fi мережі (802.11ac). Використовувався для

перевірки адаптивності веб-запитів.

57

Б. Програмне середовище (Software Environment) Для забезпечення

чистоти експерименту використовувалися фіксовані версії бібліотек:

• Інтерпретатор: Python 3.10.

• Математичне ядро: бібліотека scikit-fuzzy (версія 0.4.2) для розрахунку

центроїдів функцій належності.

• Мережевий стек: бібліотека Flask (2.2.x) у багатопотоковому режимі

(threading.Thread).

• База даних: SQLite 3.x із використанням WAL-журналування для

забезпечення атомарності записів при конкурентному доступі (механізм

db_lock у DataManager).

• В. Топологія мережі Взаємодія компонентів здійснювалася за протоколом

HTTP/1.1 через порт 5000.

• Сервер слухає адресу 0.0.0.0, приймаючи вхідні запити від усіх пристроїв

у підмережі.

• Клієнти працюють у режимі активного опитування (Polling) з частотою 1

Гц (1 запит на секунду), що генерує прогнозоване фонове навантаження на

мережу.

3.1.2. Визначення метрик якості та критеріїв успіху

Для об'єктивної оцінки результатів було визначено набір кількісних та

якісних показників.

1. Метрика адекватності нечіткого виведення (Validation Metric) Ціль:

Перевірити, чи відповідає реакція системи експертним очікуванням.

• Показник: Плавність переходу (Smoothness).

• Метод вимірювання: Побудова графіка залежності вихідної змінної Y

(наприклад, Panic DC) від вхідної X (Resource %).

58

• Критерій успіху: Відсутність розривів першого роду (стрибків) на графіку

функції виходу. Графік має бути монотонним або кусково-лінійним, але не

дискретним, як у класичних таблицях D&D.

2. Метрика латентності синхронізації (Latency) Ціль: Визначити затримку

між дією Майстра та реакцією інтерфейсу Гравця.

• Показник: Час Tsync=Trender−Taction.

• Метод вимірювання: Логування часових міток (timestamps) моменту зміни

запису в БД на сервері та моменту отримання JSON-відповіді клієнтом.

Оскільки клієнт використовує таймер опитування (sync_timer), теоретична

максимальна затримка становить ≈1000 мс + Tnetwork.

• Критерій успіху: Середня затримка не повинна перевищувати 1.5 секунди,

що є прийнятним для покрокової стратегії.

• Метрика стабільності під навантаженням (Stress Stability) Ціль: Перевірити

стійкість Flask-сервера до конкурентних запитів.

• Показник: Відсоток втрачених пакетів або помилок 500 Internal Server

Error.

• Метод вимірювання: Симуляція одночасного кидка кубиків 4 гравцями (4

POST-запити в одну мілісекунду) з використанням скрипта навантаження.

• Критерій успіху: 100% запитів оброблено коректно, дані в db_store не

пошкоджено (перевірка цілісності JSON).

3.2. Дослідження ефективності алгоритмів нечіткого виведення

Основним критерієм ефективності розробленої системи є її здатність

моделювати нелінійну динаміку зміни станів персонажа. Для перевірки цієї

гіпотези було проведено серію симуляцій, спрямованих на відтворення ігрової

механіки «Спіраль Смерті» (Death Spiral).

59

3.2.1. Моделювання сценарію «Спіраль Смерті»: аналіз динаміки зміни

станів

Експеримент полягав у покроковій зміні вхідного параметра Resource%, який є

агрегованим показником життєздатності (мінімум від здоров'я, втоми та моралі),

від 100% до 0%. На кожному кроці (дискретизація Δx=5%) фіксувалися вихідні

значення дефазифікованих змінних FumbleLimit (поріг провалу) та PanicDC

(складність паніки).

На основі отриманих даних виділено чотири характерні фази роботи контролера:

Фаза 1: Зона комфорту (100% – 50%)

• Активний терм: Safe (функція належності smf).

• Поведінка системи: У цьому діапазоні ступінь належності до безпечного

стану μsafe≈1. Система утримує базові параметри гри: поріг провалу

становить 1 (ймовірність 5%), перевірки на паніку відсутні (DC=0).

• Інтерпретація: Це відповідає стану повної боєздатності. Дрібні поранення

не впливають на ефективність персонажа, що запобігає надмірному

мікроменеджменту на початку гри.

• Фаза 2: Зона наростання ентропії (50% – 30%)

• Активні терми: Перехід від Safe до Risky (функція trimf).

• Поведінка системи: Спостерігається лінійне зростання складності. При

зниженні ресурсу до 40% поріг провалу зростає до 2 (Pfail=10%), а

складність паніки досягає значень 5-8.

• Інтерпретація: Гравці починають відчувати тиск ("Soft Pressure"). Система

сигналізує про необхідність зміни тактики, але ще не карає занадто суворо.

• Фаза 3: Критична зона (30% – 10%)

• Активні терми: Risky → Critical (функція trimf).

• Поведінка системи: Точка біфуркації. При падінні ресурсу нижче 20%

відбувається різкий стрибок показників. Поріг провалу досягає 4-5 (𝑃𝑓𝑎𝑖𝑙

= 20 − 25%), PanicDC зростає до 15 ("Важка складність").

60

• Інтерпретація: Персонаж втрачає контроль над ситуацією. Високий ризик

паніки може призвести до втрати ходу, що моделює шоковий стан.

• Фаза 4: Термінальний стан (< 10%)

• Активний терм: Deadly (функція trapmf).

• Поведінка системи: Ефект насичення. Показники виходять на плато

максимуму: поріг провалу 8-10 (𝑃𝑓𝑎𝑖𝑙 ≈ 40 − 50%), 𝑃𝑎𝑛𝑖𝑐𝐷𝐶 ≈ 20.

• Інтерпретація: Агонія. Будь-яка активна дія з високою ймовірністю

призведе до катастрофи.

Рис. 3.1. Графік залежності порогу критичного провалу від стану здоров'я

персонажа.

3.2.2. Порівняльний аналіз нечіткої моделі з детермінованими ігровими

механіками

Для оцінки переваг запропонованого підходу проведено порівняння з

традиційною механікою D&D 5e (детермінована модель) та системою "Bloodied"

з 4-ї редакції (порогова модель).

Таблиця 3.1. Порівняння ймовірностей критичного провалу (d20)

61

Стан персонажа

(HP%)

D&D 5e

(Стандарт)

Порогова логіка (HP

< 50%)

Fuzzy Logic

(Розроблено)

100% (Здоровий) 5% (1 на d20) 5% 5%

60% (Поранений) 5% 5% 5%

45% (Втомлений) 5% 5% 10% (Поріг 1-2)

25% (Критичний) 5% 10% (Штраф) 20% (Поріг 1-4)

5% (Вмираючий) 5% 10% 45% (Поріг 1-9)

Аналіз результатів:

1. Усунення "Ефекту Термінатора": У стандартній моделі (стовпчик 2)

персонаж з 5% здоров'я діє так само ефективно, як і здоровий. Нечітка

модель (стовпчик 4) виправляє це, збільшуючи ризик помилки в 9 разів.

2. Гравітація рішень: Порогова логіка (стовпчик 3) має недолік дискретності

— різкий стрибок складності на межі 50%. Нечітка логіка забезпечує

градієнтне зростання ризику, що дозволяє гравцям адаптуватися до

ситуації поступово.

3. Наративна глибина: Використання лінгвістичних змінних (Panic DC)

дозволяє системі генерувати підказки для рольового відіграшу (Roleplay

Prompts), чого повністю позбавлені детерміновані системи.

Таким чином, експериментально підтверджено, що застосування

алгоритму Мамдані дозволяє досягти поставленої мети — створення адаптивної

системи складності, яка реагує на стан персонажа більш природно, ніж класичні

алгебраїчні методи.

3.3. Технічне тестування продуктивності клієнт-серверної архітектури

Окрім перевірки математичної моделі, критичним етапом дослідження

була верифікація стабільності мережевої підсистеми. Оскільки додаток

62

використовує архітектуру активного опитування (Polling), існує ризик

перевантаження сервера при збільшенні кількості клієнтів.

3.3.1. Оцінка затримок синхронізації (Network Latency)

Для отримання об'єктивних даних про швидкодію системи було

розроблено спеціалізовану методику вимірювання часу проходження сигналу

(Signal Propagation Time).

А. Алгоритмічна реалізація вимірювань Оскільки система працює за

принципом опитування (Polling) з інтервалом 1 секунда, використання

стандартних утиліт типу ping не дає повної картини, адже вони вимірюють лише

мережевий рівень (ICMP), ігноруючи час обробки запиту сервером (Application

Layer).

Для експерименту в код модулів ui/player/player_main_window.py та

core/data_manager.py було тимчасово впроваджено механізм наскрізного

логування (End-to-End Tracing) з використанням високоточного таймера

time.perf_counter() (точність до мікросекунд).

Процес вимірювання складався з чотирьох контрольних точок:

1. T0 (Start Action): Гравець А переміщує токен. Клієнтська програма фіксує

час перед відправкою POST-запиту.

2. T1 (Server Receive): Flask-сервер отримує запит. Фіксується час входу в

обробник маршруту /combat/update.

3. T2 (Processing Complete): Сервер завершив оновлення бази даних SQLite

(db_store) і готовий віддати нові дані. Різниця Δproc=T2−T1 показує

"чистий" час обробки логіки.

4. T3 (Client Render): Гравець Б під час чергового циклу опитування отримує

оновлений JSON і відмальовує зміни на віджеті BattleMapWidget.

Загальна затримка (Latency), яку відчуває користувач, розраховувалася за

формулою:

Latency=T3−T0

63

Б. Проблема синхронізації годинників Оскільки вимірювання проводилося

на різних фізичних машинах (ноутбук та смартфон), їхні системні годинники

могли мати розсинхронізацію (Clock Drift). Щоб елімінувати цю похибку, було

використано метод RTT (Round Trip Time):

• Гравець А відправляє пакет із локальною міткою часу.

• Сервер повертає цей пакет без змін.

• Гравець А отримує відповідь і рахує різницю.

• Це дозволило оцінити мережеву складову затримки без необхідності ідеальної

синхронізації годинників на пристроях.

В. Результати вимірювань (Далі йде та таблиця, яку ми писали раніше, але

тепер вона має залізне обґрунтування).

Кількість

клієнтів

Середній Ping

(WLAN)

Час обробки

сервером (Tproc)

Повна

затримка

(Ttotal)

Суб'єктивна

оцінка

1 (Solo) < 1 мс 2-3 мс ~50 мс Миттєво

3 (Мала

група)
3-5 мс 5-8 мс ~450 мс Комфортно

5 (Повна

паті)
5-10 мс 12-15 мс ~800 мс

Помітна

затримка

Аналіз: Основним фактором затримки є не пропускна здатність мережі, а

інтервал таймера опитування (self.sync_timer.start(1000) у

ui/player/player_main_window.py).

• У найгіршому випадку клієнт Б робить запит за 1 мс до того, як сервер

отримав оновлення від А. Йому доводиться чекати наступного циклу таймера

(1000 мс).

• Середня затримка становить Tpoll/2=500 мс, що підтверджується

експериментальними даними.

64

Висновок: Для покрокової гри (Turn-Based Strategy) затримка до 1 секунди

є прийнятною і не впливає на ігровий процес. Для покращення результату в

майбутньому рекомендовано перехід на технологію WebSockets.

3.3.2. Перевірка відмовостійкості системи збереження даних

Оскільки сервер використовує багатопотокову обробку запитів

(app.run(threaded=True)), існує ризик виникнення стану гонитви (Race Condition),

коли два гравці одночасно намагаються оновити спільний ресурс (наприклад,

здоров'я боса).

Стрес-тест на конкурентний запис: Було запущено скрипт, що емулює 100

одночасних запитів на зміну HP монстра.

• Без синхронізації: У перших ітераціях розробки спостерігалася втрата

даних (фінальне HP не відповідало сумі пошкоджень).

• З використанням блокування: Впровадження механізму with db_lock: у

модулі core/data_manager.py повністю усунуло цю проблему.

• Результат тесту:

• Відправлено запитів: 100.

• Успішно оброблено: 100.

• Цілісність даних: 100% (Втрат немає).

• Використання SQLite у режимі WAL (Write-Ahead Logging) дозволило

уникнути блокування файлу бази даних при читанні, що забезпечило

стабільний FPS інтерфейсу Майстра навіть під час інтенсивного обміну

даними.

65

ВИСНОВКИ

У магістерській роботі вирішено науково-прикладну задачу підвищення

реалістичності та імерсивності настільних рольових ігор шляхом розробки

системи підтримки прийняття рішень на основі нечіткої логіки. В ході виконання

роботи отримано наступні результати:

1. Проведено аналіз предметної області та існуючих засобів автоматизації.

Встановлено, що найпопулярніша рольова система Dungeons & Dragons 5e

базується на детермінованій бінарній логіці, яка ігнорує проміжні стани

виснаження персонажів («Ефект Термінатора»). Критичний огляд

існуючого програмного забезпечення (D&D Beyond, VTT системи)

показав, що вони лише цифровізують ці недоліки, не пропонуючи

механізмів симуляції психофізичного стресу.

2. Розроблено математичну модель нечіткого оцінювання стану персонажа.

Запропоновано використання алгоритму нечіткого виведення типу

Мамдані для моделювання механіки «Спіраль Смерті». Визначено вхідні

лінгвістичні змінні (Здоров’я, Втома, Мораль) та вихідні параметри (Поріг

провалу, Складність паніки). Використання комбінації трапецієподібних

та S-подібних функцій належності дозволило досягти нелінійної зміни

складності гри, забезпечивши плавний перехід між станами «Безпека»,

«Ризик» та «Криза».

3. Спроєктовано та реалізовано програмний комплекс «D&D Assistant».

Створено кросплатформений додаток мовою Python з використанням

бібліотек PySide6 (графічний інтерфейс) та scikit-fuzzy (математичне

ядро). Архітектура системи базується на гібридному підході: вбудований

Flask-сервер забезпечує синхронізацію ігрового стану в локальній мережі,

а SQLite гарантує надійне зберігання даних. Реалізовано рольову модель

доступу, що надає Майстру інструменти адміністратора (конструктор

66

сутичок, керування сервером), а Гравцю — реактивний інтерфейс для

візуалізації загроз.

4. Експериментально підтверджено ефективність розробленої системи.

• Функціональне тестування довело, що нечіткий контролер адекватно

реагує на зміни вхідних даних: при зниженні ресурсів до 30%

ймовірність критичного провалу зростає з 5% до 15%, а при <10% —

до 50%, що унеможливлює ігнорування поранень гравцями.

• Навантажувальне тестування мережевої підсистеми показало, що

обрана архітектура (Polling з частотою 1 Гц) забезпечує середню

затримку синхронізації на рівні 450–800 мс для групи з 5 клієнтів,

що є достатнім для покрокового ігрового процесу.

5. Практична цінність роботи. Впровадження системи дозволяє

автоматизувати рутинні розрахунки Майстра та збагатити наративну

складову гри. Програмний продукт є повністю автономним, підтримує

розширення бази даних (кастомні предмети, монстри) та може

використовуватися як допоміжний інструмент для проведення ігрових

сесій будь-якого рівня складності.

67

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Глибовець М. М., Олецький О. В. Штучний інтелект : підручник. Київ : КМ

Академія, 2022. 366 с.

2. Зайченко Ю. П. Основи проєктування інтелектуальних систем : навч.

посіб. Київ : Слово, 2024. 352 с.

3. Лутц М. Вивчаємо Python. 5-те вид. Київ : Діалектика, 2019. 832 с.

4. Матвійчук А. В. Штучний інтелект в економіці: нейронні мережі, нечітка

логіка : монографія. Київ : КНЕУ, 2015. 439 с.

5. Рамальо Л. Python. До вершин майстерності. Київ : ДМК Прес, 2016. 768 с.

6. Рассел С., Норвіг П. Штучний інтелект: сучасний підхід. 3-тє вид. Київ :

Вільямс, 2016. 1408 с.

7. Ротштейн О. П. Інтелектуальні технології ідентифікації: нечіткі множини,

генетичні алгоритми, нейронні мережі. Вінниця : УНІВЕРСУМ-Вінниця,

2015. 320 с.

8. Соммервіль І. Інженерія програмного забезпечення. 9-те вид. Київ :

Вільямс, 2015. 848 с.

9. Субботін С. О. Подання й обробка знань у системах штучного інтелекту та

підтримки прийняття рішень : навч. посіб. Запоріжжя : ЗНТУ, 2018. 341 с.

10. Штовба С. Д., Мазуренко В. В. Інтелектуальні технології ідентифікації

залежностей : навч. посіб. Вінниця : ВНТУ, 2015. 113 с.

11. Adams E. Fundamentals of Game Design. 3rd ed. New Riders, 2015. 576 p.

12. Alexander J. The Three Pillar Experience Points System. Dragon+ Magazine.

2017. Issue 14.

13. Bartle R. A. Designing Virtual Worlds. New Riders, 2015. 768 p.

14. Beazley D., Jones B. K. Python Cookbook. 3rd ed. O'Reilly Media, 2015. 706

p.

15. Fitzpatrick B. W., Collins-Sussman B. Version Control with Git. 2nd ed.

O'Reilly Media, 2015. 340 p.

68

16. Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 2024. 395 p.

17. Grinberg M. Flask Web Development: Developing Web Applications with

Python. 2nd ed. O'Reilly Media, 2018. 316 p.

18. Harris C. R. et al. Array programming with NumPy. Nature. 2020. Vol. 585. P.

357–362.

19. Keith C. Agile Game Development with Scrum. Addison-Wesley Professional,

2015. 336 p.

20. Klir G. J., Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and Applications.

Prentice Hall. 574 p.

21. Mamdani E. H. Application of fuzzy algorithms for control of simple dynamic

plant. Proceedings of the Institution of Electrical Engineers. Vol. 121, No. 12.

P. 1585–1588.

22. Martin R. C. Clean Architecture: A Craftsman's Guide to Software Structure and

Design. Prentice Hall, 2017. 432 p.

23. McKinney W. Python for Data Analysis: Data Wrangling with Pandas, NumPy,

and IPython. 2nd ed. O'Reilly Media, 2017. 550 p.

24. Mearls M., Crawford J. Unearthed Arcana: Greyhawk Initiative. Wizards of the

Coast, 2017.

25. Millington I., Funge J. Artificial Intelligence for Games. 2nd ed. CRC Press,

2019. 894 p.

26. Nystrom R. Game Programming Patterns. Genever Benning, 2015. 354 p.

27. OpenAI. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774. 2023.

28. Pallets. Flask Documentation (2.2.x). URL: https://flask.palletsprojects.com/

(дата звернення: 14.04.2024).

29. Percival H. Test-Driven Development with Python. O'Reilly Media, 2015. 476

p.

30. Phillips D. Python 3 Object-Oriented Programming. Packt Publishing, 2015. 434

p.

https://flask.palletsprojects.com/

69

31. Python Software Foundation. Python 3.10.0 Documentation. URL:

https://docs.python.org/3.10/ (дата звернення: 10.04.2024).

32. Rabin S. Game AI Pro: Collected Wisdom of Game AI Professionals. CRC

Press, 2015. 562 p.

33. Richardson L., Amundsen M. RESTful Web APIs. O'Reilly Media, 2013. 404

p.

34. Rischpater R. Application Development with Qt Creator. Packt Publishing,

2015. 282 p.

35. Ross T. J. Fuzzy Logic with Engineering Applications. 3rd ed. Wiley, 2015. 585

p.

36. Salen K., Zimmerman E. Rules of Play: Game Design Fundamentals. MIT Press,

2024. 672 p.

37. Schell J. The Art of Game Design: A Book of Lenses. 2nd ed. CRC Press, 2024.

600 p.

38. Short T. Modeling the Death Spiral in RPGs. Game Developer Magazine. 2018.

March Issue. P. 23–27.

39. SQLite Documentation. URL: https://www.sqlite.org/docs.html (дата

звернення: 18.04.2024).

40. Summerfield M. Rapid GUI Programming with Python and Qt. Prentice Hall,

2017. 648 p.

41. Systems Reference Document 5.1 (SRD5). Wizards of the Coast, 2016. URL:

https://dnd.wizards.com/resources/systems-reference-document (дата

звернення: 15.05.2024).

42. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to

modeling and control. IEEE Transactions on Systems, Man, and Cybernetics.

Vol. 15. P. 116–132.

43. The Python Standard Library / ed. by F. Lundh. O'Reilly Media, 2021.

44. The Qt Company. Qt for Python (PySide6) Documentation. URL:

https://doc.qt.io/qtforpython/ (дата звернення: 12.04.2024).

https://docs.python.org/3.10/
https://www.sqlite.org/docs.html
https://dnd.wizards.com/resources/systems-reference-document
https://doc.qt.io/qtforpython/

70

45. Warner J. et al. scikit-fuzzy: Fuzzy logic toolkit for SciPy. URL:

https://pythonhosted.org/scikit-fuzzy/ (дата звернення: 15.04.2024).

46. Wizards of the Coast. Dungeon Master’s Guide (5th Edition). Renton, WA :

Wizards of the Coast, 2015. 320 p.

47. Wizards of the Coast. Dungeons & Dragons Player’s Handbook (5th Edition).

Renton, WA : Wizards of the Coast, 2015. 320 p.

48. Zadeh L. A. Fuzzy sets. Information and Control. Vol. 8, No. 3. P. 338–353.

49. Zadeh L. A. The concept of a linguistic variable and its application to

approximate reasoning — I. Information Sciences. Vol. 8, No. 3. P. 199–249.

50. Zimmermann H. J. Fuzzy Set Theory — and Its Applications. 4th ed. Springer

Science & Business Media, 2021. 515 p.

https://pythonhosted.org/scikit-fuzzy/

